Unverified Commit 05e72aa0 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Adapt repository creation to latest hf_hub (#21158)

* Adapt repository creation to latest hf_hub

* Update all examples

* Fix other tests, add Flax examples

* Address review comments
parent 32525428
......@@ -45,7 +45,7 @@ from flax import jax_utils, traverse_util
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
......@@ -430,7 +430,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
......
......@@ -45,7 +45,7 @@ from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
......@@ -502,7 +502,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
......
......@@ -46,7 +46,7 @@ from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
......@@ -376,7 +376,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
......
......@@ -46,7 +46,7 @@ from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
......@@ -416,7 +416,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
......
......@@ -45,7 +45,7 @@ from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
......@@ -542,7 +542,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
......
......@@ -44,7 +44,7 @@ from flax import struct, traverse_util
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AutoConfig,
AutoTokenizer,
......@@ -467,7 +467,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# region Load Data
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
......
......@@ -46,7 +46,7 @@ from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
......@@ -450,7 +450,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
......
......@@ -39,7 +39,7 @@ from flax import struct, traverse_util
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AutoConfig,
AutoTokenizer,
......@@ -350,7 +350,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
......
......@@ -41,7 +41,7 @@ from flax import struct, traverse_util
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AutoConfig,
AutoTokenizer,
......@@ -406,7 +406,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
......
......@@ -43,7 +43,7 @@ from flax import jax_utils
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
......@@ -298,7 +298,8 @@ def main():
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
# Initialize datasets and pre-processing transforms
# We use torchvision here for faster pre-processing
......
......@@ -40,7 +40,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AutoConfig,
AutoFeatureExtractor,
......@@ -246,7 +246,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -41,7 +41,7 @@ import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
......@@ -282,7 +282,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -41,7 +41,7 @@ import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
......@@ -291,7 +291,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -40,7 +40,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
......@@ -317,7 +317,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -38,7 +38,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AdamW,
DataCollatorWithPadding,
......@@ -332,7 +332,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -38,7 +38,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
......@@ -370,7 +370,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -36,7 +36,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository, hf_hub_download
from huggingface_hub import Repository, create_repo, hf_hub_download
from transformers import (
AutoConfig,
AutoFeatureExtractor,
......@@ -354,7 +354,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -31,7 +31,7 @@ from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AdamW,
SchedulerType,
......@@ -422,7 +422,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
......
......@@ -40,7 +40,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from filelock import FileLock
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
......@@ -373,7 +373,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
......@@ -32,7 +32,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from huggingface_hub import Repository, create_repo
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
......@@ -244,7 +244,8 @@ def main():
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment