Unverified Commit 0540d1b6 authored by Dan Tegzes's avatar Dan Tegzes Committed by GitHub
Browse files

Add type hints for UniSpeech (#16399)

* Add type hints for UniSpeech

* Added type hints for UniSpeechSat

* Added type hints for Wave2Vec2 (PT)

* Added type hints for models dependent of wave2vec
parent 875e07a9
...@@ -977,13 +977,13 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel): ...@@ -977,13 +977,13 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, Data2VecAudioBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1085,13 +1085,13 @@ class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel): ...@@ -1085,13 +1085,13 @@ class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1221,13 +1221,13 @@ class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel): ...@@ -1221,13 +1221,13 @@ class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1342,12 +1342,12 @@ class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel): ...@@ -1342,12 +1342,12 @@ class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1519,13 +1519,13 @@ class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel): ...@@ -1519,13 +1519,13 @@ class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, XVectorOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1008,13 +1008,13 @@ class HubertModel(HubertPreTrainedModel): ...@@ -1008,13 +1008,13 @@ class HubertModel(HubertPreTrainedModel):
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutput]:
""" """
Returns: Returns:
...@@ -1135,13 +1135,13 @@ class HubertForCTC(HubertPreTrainedModel): ...@@ -1135,13 +1135,13 @@ class HubertForCTC(HubertPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1271,13 +1271,13 @@ class HubertForSequenceClassification(HubertPreTrainedModel): ...@@ -1271,13 +1271,13 @@ class HubertForSequenceClassification(HubertPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -914,13 +914,13 @@ class SEWModel(SEWPreTrainedModel): ...@@ -914,13 +914,13 @@ class SEWModel(SEWPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1018,13 +1018,13 @@ class SEWForCTC(SEWPreTrainedModel): ...@@ -1018,13 +1018,13 @@ class SEWForCTC(SEWPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1154,13 +1154,13 @@ class SEWForSequenceClassification(SEWPreTrainedModel): ...@@ -1154,13 +1154,13 @@ class SEWForSequenceClassification(SEWPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1427,13 +1427,13 @@ class SEWDModel(SEWDPreTrainedModel): ...@@ -1427,13 +1427,13 @@ class SEWDModel(SEWDPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1531,13 +1531,13 @@ class SEWDForCTC(SEWDPreTrainedModel): ...@@ -1531,13 +1531,13 @@ class SEWDForCTC(SEWDPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1667,13 +1667,13 @@ class SEWDForSequenceClassification(SEWDPreTrainedModel): ...@@ -1667,13 +1667,13 @@ class SEWDForSequenceClassification(SEWDPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1160,13 +1160,13 @@ class UniSpeechModel(UniSpeechPreTrainedModel): ...@@ -1160,13 +1160,13 @@ class UniSpeechModel(UniSpeechPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, UniSpeechBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1274,12 +1274,12 @@ class UniSpeechForPreTraining(UniSpeechPreTrainedModel): ...@@ -1274,12 +1274,12 @@ class UniSpeechForPreTraining(UniSpeechPreTrainedModel):
@replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, UniSpeechForPreTrainingOutput]:
r""" r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
...@@ -1412,13 +1412,13 @@ class UniSpeechForCTC(UniSpeechPreTrainedModel): ...@@ -1412,13 +1412,13 @@ class UniSpeechForCTC(UniSpeechPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1548,13 +1548,13 @@ class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): ...@@ -1548,13 +1548,13 @@ class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1199,13 +1199,13 @@ class UniSpeechSatModel(UniSpeechSatPreTrainedModel): ...@@ -1199,13 +1199,13 @@ class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, UniSpeechSatBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1318,12 +1318,12 @@ class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel): ...@@ -1318,12 +1318,12 @@ class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
@replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, UniSpeechSatForPreTrainingOutput]:
r""" r"""
Returns: Returns:
...@@ -1440,13 +1440,13 @@ class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel): ...@@ -1440,13 +1440,13 @@ class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1576,13 +1576,13 @@ class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel): ...@@ -1576,13 +1576,13 @@ class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1697,12 +1697,12 @@ class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel): ...@@ -1697,12 +1697,12 @@ class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1874,13 +1874,13 @@ class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel): ...@@ -1874,13 +1874,13 @@ class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, XVectorOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1331,13 +1331,13 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel): ...@@ -1331,13 +1331,13 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1448,14 +1448,14 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel): ...@@ -1448,14 +1448,14 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
@replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.BoolTensor] = None,
sampled_negative_indices=None, sampled_negative_indices: Optional[torch.BoolTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]:
r""" r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
...@@ -1696,13 +1696,13 @@ class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel): ...@@ -1696,13 +1696,13 @@ class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1831,13 +1831,13 @@ class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel): ...@@ -1831,13 +1831,13 @@ class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1951,12 +1951,12 @@ class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel): ...@@ -1951,12 +1951,12 @@ class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -2125,13 +2125,13 @@ class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel): ...@@ -2125,13 +2125,13 @@ class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, XVectorOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1282,13 +1282,13 @@ class WavLMModel(WavLMPreTrainedModel): ...@@ -1282,13 +1282,13 @@ class WavLMModel(WavLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
mask_time_indices=None, mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, WavLMBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -1390,13 +1390,13 @@ class WavLMForCTC(WavLMPreTrainedModel): ...@@ -1390,13 +1390,13 @@ class WavLMForCTC(WavLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, CausalLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
...@@ -1526,13 +1526,13 @@ class WavLMForSequenceClassification(WavLMPreTrainedModel): ...@@ -1526,13 +1526,13 @@ class WavLMForSequenceClassification(WavLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1647,12 +1647,12 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel): ...@@ -1647,12 +1647,12 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1824,13 +1824,13 @@ class WavLMForXVector(WavLMPreTrainedModel): ...@@ -1824,13 +1824,13 @@ class WavLMForXVector(WavLMPreTrainedModel):
) )
def forward( def forward(
self, self,
input_values, input_values: Optional[torch.Tensor],
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[torch.Tensor] = None,
): ) -> Union[Tuple, XVectorOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment