Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
04028317
Unverified
Commit
04028317
authored
Jun 14, 2021
by
Stas Bekman
Committed by
GitHub
Jun 14, 2021
Browse files
consistent nn. and nn.functional: part 5 docs (#12161)
parent
88e84186
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
9 additions
and
9 deletions
+9
-9
docs/source/add_new_model.rst
docs/source/add_new_model.rst
+1
-1
docs/source/main_classes/trainer.rst
docs/source/main_classes/trainer.rst
+2
-2
docs/source/migration.md
docs/source/migration.md
+2
-2
docs/source/quicktour.rst
docs/source/quicktour.rst
+2
-2
docs/source/task_summary.rst
docs/source/task_summary.rst
+2
-2
No files found.
docs/source/add_new_model.rst
View file @
04028317
...
...
@@ -518,7 +518,7 @@ PyTorch, called ``SimpleModel`` as follows:
.. code:: python
import torch.nn as
nn
from torch import
nn
class SimpleModel(nn.Module):
def __init__(self):
...
...
docs/source/main_classes/trainer.rst
View file @
04028317
...
...
@@ -59,7 +59,7 @@ classification:
.. code-block:: python
import torch
from torch import nn
from transformers import Trainer
class MultilabelTrainer(Trainer):
...
...
@@ -67,7 +67,7 @@ classification:
labels = inputs.pop("labels")
outputs = model(**inputs)
logits = outputs.logits
loss_fct =
torch.
nn.BCEWithLogitsLoss()
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits.view(-1, self.model.config.num_labels),
labels.float().view(-1, self.model.config.num_labels))
return (loss, outputs) if return_outputs else loss
...
...
docs/source/migration.md
View file @
04028317
...
...
@@ -23,7 +23,7 @@ expected changes:
#### 1. AutoTokenizers and pipelines now use fast (rust) tokenizers by default.
The python and rust tokenizers have roughly the same API, but the rust tokenizers have a more complete feature set.
The python and rust tokenizers have roughly the same API, but the rust tokenizers have a more complete feature set.
This introduces two breaking changes:
-
The handling of overflowing tokens between the python and rust tokenizers is different.
...
...
@@ -85,7 +85,7 @@ This is a breaking change as importing intermediary layers using a model's modul
##### How to obtain the same behavior as v3.x in v4.x
In order to obtain the same behavior as version
`v3.x`
, you should update the path used to access the layers.
In order to obtain the same behavior as version
`v3.x`
, you should update the path used to access the layers.
In version
`v3.x`
:
```
bash
...
...
docs/source/quicktour.rst
View file @
04028317
...
...
@@ -265,8 +265,8 @@ Let's apply the SoftMax activation to get predictions.
.. code-block::
>>> ## PYTORCH CODE
>>>
import torch.nn.functional as F
>>> pt_predictions =
F
.softmax(pt_outputs.logits, dim=-1)
>>>
from torch import nn
>>> pt_predictions =
nn.functional
.softmax(pt_outputs.logits, dim=-1)
>>> ## TENSORFLOW CODE
>>> import tensorflow as tf
>>> tf.nn.softmax(tf_outputs.logits, axis=-1)
...
...
docs/source/task_summary.rst
View file @
04028317
...
...
@@ -451,7 +451,7 @@ of tokens.
>>>
##
PYTORCH
CODE
>>>
from
transformers
import
AutoModelWithLMHead
,
AutoTokenizer
,
top_k_top_p_filtering
>>>
import
torch
>>>
from
torch
.
nn
import
functional
as
F
>>>
from
torch
import
nn
>>>
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"gpt2"
)
>>>
model
=
AutoModelWithLMHead
.
from_pretrained
(
"gpt2"
)
...
...
@@ -467,7 +467,7 @@ of tokens.
>>>
filtered_next_token_logits
=
top_k_top_p_filtering
(
next_token_logits
,
top_k
=
50
,
top_p
=
1.0
)
>>>
#
sample
>>>
probs
=
F
.
softmax
(
filtered_next_token_logits
,
dim
=-
1
)
>>>
probs
=
nn
.
functional
.
softmax
(
filtered_next_token_logits
,
dim
=-
1
)
>>>
next_token
=
torch
.
multinomial
(
probs
,
num_samples
=
1
)
>>>
generated
=
torch
.
cat
([
input_ids
,
next_token
],
dim
=-
1
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment