Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
01b1a053
Commit
01b1a053
authored
Nov 03, 2018
by
thomwolf
Browse files
Merge branch 'master' of
https://github.com/huggingface/pytorch-pretrained-BERT
parents
8aa22af0
72ab1039
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
61 additions
and
3 deletions
+61
-3
modeling_pytorch.py
modeling_pytorch.py
+16
-3
optimization_test_pytorch.py
optimization_test_pytorch.py
+45
-0
No files found.
modeling_pytorch.py
View file @
01b1a053
...
@@ -494,9 +494,22 @@ class BertForQuestionAnswering(nn.Module):
...
@@ -494,9 +494,22 @@ class BertForQuestionAnswering(nn.Module):
start_logits
,
end_logits
=
logits
.
split
(
1
,
dim
=-
1
)
start_logits
,
end_logits
=
logits
.
split
(
1
,
dim
=-
1
)
if
start_positions
is
not
None
and
end_positions
is
not
None
:
if
start_positions
is
not
None
and
end_positions
is
not
None
:
loss_fct
=
CrossEntropyLoss
()
#loss_fct = CrossEntropyLoss()
start_loss
=
loss_fct
(
start_logits
,
start_positions
)
#start_loss = loss_fct(start_logits, start_positions)
end_loss
=
loss_fct
(
end_logits
,
end_positions
)
#end_loss = loss_fct(end_logits, end_positions)
batch_size
,
seq_length
=
input_ids
.
size
()
def
compute_loss
(
logits
,
positions
):
max_position
=
positions
.
max
().
item
()
one_hot
=
torch
.
FloatTensor
(
batch_size
,
max
(
max_position
,
seq_length
)
+
1
).
zero_
()
one_hot
=
one_hot
.
scatter
(
1
,
positions
.
cpu
(),
1
)
# Second argument need to be LongTensor and not cuda.LongTensor
one_hot
=
one_hot
[:,
:
seq_length
].
to
(
input_ids
.
device
)
log_probs
=
nn
.
functional
.
log_softmax
(
logits
,
dim
=
-
1
).
view
(
batch_size
,
seq_length
)
loss
=
-
torch
.
mean
(
torch
.
sum
(
one_hot
*
log_probs
),
dim
=
-
1
)
return
loss
start_loss
=
compute_loss
(
start_logits
,
start_positions
)
end_loss
=
compute_loss
(
end_logits
,
end_positions
)
total_loss
=
(
start_loss
+
end_loss
)
/
2
total_loss
=
(
start_loss
+
end_loss
)
/
2
return
total_loss
,
(
start_logits
,
end_logits
)
return
total_loss
,
(
start_logits
,
end_logits
)
else
:
else
:
...
...
optimization_test_pytorch.py
0 → 100644
View file @
01b1a053
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
optimization_pytorch
as
optimization
import
torch
import
unittest
class
OptimizationTest
(
unittest
.
TestCase
):
def
assertListAlmostEqual
(
self
,
list1
,
list2
,
tol
):
self
.
assertEqual
(
len
(
list1
),
len
(
list2
))
for
a
,
b
in
zip
(
list1
,
list2
):
self
.
assertAlmostEqual
(
a
,
b
,
delta
=
tol
)
def
test_adam
(
self
):
w
=
torch
.
tensor
([
0.1
,
-
0.2
,
-
0.1
],
requires_grad
=
True
)
x
=
torch
.
tensor
([
0.4
,
0.2
,
-
0.5
])
criterion
=
torch
.
nn
.
MSELoss
(
reduction
=
'elementwise_mean'
)
optimizer
=
optimization
.
BERTAdam
(
params
=
{
w
},
lr
=
0.2
,
schedule
=
'warmup_linear'
,
warmup
=
0.1
,
t_total
=
100
)
for
_
in
range
(
100
):
# TODO Solve: reduction='elementwise_mean'=True not taken into account so division by x.size(0) is necessary
loss
=
criterion
(
x
,
w
)
/
x
.
size
(
0
)
loss
.
backward
()
optimizer
.
step
()
self
.
assertListAlmostEqual
(
w
.
tolist
(),
[
0.4
,
0.2
,
-
0.5
],
tol
=
1e-2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment