extract_for_distil.py 3.83 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DilBERT.
"""
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from pytorch_transformers import BertForPreTraining
import torch
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Extraction some layers of the full BertForPreTraining for Transfer Learned Distillation")
    parser.add_argument("--bert_model", default='bert-base-uncased', type=str)
    parser.add_argument("--dump_checkpoint", default='serialization_dir/transfer_learning_checkpoint_0247911.pth', type=str)
    parser.add_argument("--vocab_transform", action='store_true')
    args = parser.parse_args()


    model = BertForPreTraining.from_pretrained(args.bert_model)

    state_dict = model.state_dict()
    compressed_sd = {}

    for w in ['word_embeddings', 'position_embeddings']:
        compressed_sd[f'dilbert.embeddings.{w}.weight'] = \
            state_dict[f'bert.embeddings.{w}.weight']
    for w in ['weight', 'bias']:
        compressed_sd[f'dilbert.embeddings.LayerNorm.{w}'] = \
            state_dict[f'bert.embeddings.LayerNorm.{w}']

    std_idx = 0
    for teacher_idx in [0, 2, 4, 7, 9, 11]:
        for w in ['weight', 'bias']:
            compressed_sd[f'dilbert.transformer.layer.{std_idx}.attention.q_lin.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.self.query.{w}']
            compressed_sd[f'dilbert.transformer.layer.{std_idx}.attention.k_lin.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.self.key.{w}']
            compressed_sd[f'dilbert.transformer.layer.{std_idx}.attention.v_lin.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.self.value.{w}']

            compressed_sd[f'dilbert.transformer.layer.{std_idx}.attention.out_lin.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.output.dense.{w}']
            compressed_sd[f'dilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}']

            compressed_sd[f'dilbert.transformer.layer.{std_idx}.ffn.lin1.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.intermediate.dense.{w}']
            compressed_sd[f'dilbert.transformer.layer.{std_idx}.ffn.lin2.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.output.dense.{w}']
            compressed_sd[f'dilbert.transformer.layer.{std_idx}.output_layer_norm.{w}'] = \
                state_dict[f'bert.encoder.layer.{teacher_idx}.output.LayerNorm.{w}']
        std_idx += 1

    compressed_sd[f'vocab_projector.weight'] = state_dict[f'cls.predictions.decoder.weight']
    compressed_sd[f'vocab_projector.bias'] = state_dict[f'cls.predictions.bias']
    if args.vocab_transform:
        for w in ['weight', 'bias']:
            compressed_sd[f'vocab_transform.{w}'] = state_dict[f'cls.predictions.transform.dense.{w}']
            compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'cls.predictions.transform.LayerNorm.{w}']

    print(f'N layers selected for distillation: {std_idx}')
    print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}')

    print(f'Save transfered checkpoint to {args.dump_checkpoint}.')
    torch.save(compressed_sd, args.dump_checkpoint)