training.rst 16.4 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

13
Fine-tuning a pretrained model
Sylvain Gugger's avatar
Sylvain Gugger committed
14
=======================================================================================================================
15

16
17
18
19
In this tutorial, we will show you how to fine-tune a pretrained model from the Transformers library. In TensorFlow,
models can be directly trained using Keras and the :obj:`fit` method. In PyTorch, there is no generic training loop so
the 馃 Transformers library provides an API with the class :class:`~transformers.Trainer` to let you fine-tune or train
a model from scratch easily. Then we will show you how to alternatively write the whole training loop in PyTorch.
Sylvain Gugger's avatar
Sylvain Gugger committed
20

21
22
23
Before we can fine-tune a model, we need a dataset. In this tutorial, we will show you how to fine-tune BERT on the
`IMDB dataset <https://www.imdb.com/interfaces/>`__: the task is to classify whether movie reviews are positive or
negative. For examples of other tasks, refer to the :ref:`additional-resources` section!
24

25
.. _data-processing:
26

27
28
Preparing the datasets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
29

30
31
32
33
We will use the `馃 Datasets <https:/github.com/huggingface/datasets/>`__ library to download and preprocess the IMDB
datasets. We will go over this part pretty quickly. Since the focus of this tutorial is on training, you should refer
to the 馃 Datasets `documentation <https://huggingface.co/docs/datasets/>`__ or the :doc:`preprocessing` tutorial for
more information.
34

35
36
37
38
39
First, we can use the :obj:`load_dataset` function to download and cache the dataset:

.. code-block:: python

    from datasets import load_dataset
40

41
    raw_datasets = load_dataset("imdb")
Sylvain Gugger's avatar
Sylvain Gugger committed
42

43
44
45
46
47
48
49
50
This works like the :obj:`from_pretrained` method we saw for the models and tokenizers (except the cache directory is
`~/.cache/huggingface/dataset` by default).

The :obj:`raw_datasets` object is a dictionary with three keys: :obj:`"train"`, :obj:`"test"` and :obj:`"unsupervised"`
(which correspond to the three splits of that dataset). We will use the :obj:`"train"` split for training and the
:obj:`"test"` split for validation.

To preprocess our data, we will need a tokenizer:
51
52
53

.. code-block:: python

54
    from transformers import AutoTokenizer
55

56
57
58
59
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

As we saw in :doc:`preprocessing`, we can prepare the text inputs for the model with the following command (this is an
example, not a command you can execute):
60
61
62

.. code-block:: python

63
64
65
66
    inputs = tokenizer(sentences, padding="max_length", truncation=True)

This will make all the samples have the maximum length the model can accept (here 512), either by padding or truncating
them.
67

68
69
However, we can instead apply these preprocessing steps to all the splits of our dataset at once by using the
:obj:`map` method:
70
71
72

.. code-block:: python

73
74
    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
75

76
77
78
79
80
81
    tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)

You can learn more about the map method or the other ways to preprocess the data in the 馃 Datasets `documentation
<https://huggingface.co/docs/datasets/>`__.

Next we will generate a small subset of the training and validation set, to enable faster training:
82
83
84

.. code-block:: python

85
86
87
88
89
90
91
    small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) 
    small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) 
    full_train_dataset = tokenized_datasets["train"]
    full_eval_dataset = tokenized_datasets["test"]

In all the examples below, we will always use :obj:`small_train_dataset` and :obj:`small_eval_dataset`. Just replace
them by their `full` equivalent to train or evaluate on the full dataset.
92

93
94
95
96
97
98
99
100
101
102
.. _trainer:

Fine-tuning in PyTorch with the Trainer API
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Since PyTorch does not provide a training loop, the 馃 Transformers library provides a :class:`~transformers.Trainer`
API that is optimized for 馃 Transformers models, with a wide range of training options and with built-in features like
logging, gradient accumulation, and mixed precision.

First, let's define our model:
103
104
105

.. code-block:: python

106
107
108
    from transformers import AutoModelForSequenceClassification

    model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
109

110
111
112
113
114
115
116
117
118
This will issue a warning about some of the pretrained weights not being used and some weights being randomly
initialized. That's because we are throwing away the pretraining head of the BERT model to replace it with a
classification head which is randomly initialized. We will fine-tune this model on our task, transferring the knowledge
of the pretrained model to it (which is why doing this is called transfer learning).

Then, to define our :class:`~transformers.Trainer`, we will need to instantiate a
:class:`~transformers.TrainingArguments`. This class contains all the hyperparameters we can tune for the
:class:`~transformers.Trainer` or the flags to activate the different training options it supports. Let's begin by
using all the defaults, the only thing we then have to provide is a directory in which the checkpoints will be saved:
119
120
121

.. code-block:: python

122
    from transformers import TrainingArguments
123

124
    training_args = TrainingArguments("test_trainer")
125

126
Then we can instantiate a :class:`~transformers.Trainer` like this:
127
128
129

.. code-block:: python

130
    from transformers import Trainer
131

132
133
134
135
136
    trainer = Trainer(
        model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset
    )

To fine-tune our model, we just need to call
137
138
139

.. code-block:: python

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    trainer.train()

which will start a training that you can follow with a progress bar, which should take a couple of minutes to complete
(as long as you hav access to a GPU). It won't actually tell you anything useful about how well (or badly) your model
is performing however as by default, there is no evaluation during training, and we didn't tell the
:class:`~transformers.Trainer` to compute any metrics. Let's have a look on how to do that now!

To have the :class:`~transformers.Trainer` compute and report metrics, we need to give it a :obj:`compute_metrics`
function that takes predictions and labels (grouped in a namedtuple called :class:`~transformers.EvalPrediction`) and
return a dictionary with string items (the metric names) and float values (the metric values).

The 馃 Datasets library provides an easy way to get the common metrics used in NLP with the :obj:`load_metric` function.
here we simply use accuracy. Then we define the :obj:`compute_metrics` function that just convert logits to predictions
(remember that all 馃 Transformers models return the logits) and feed them to :obj:`compute` method of this metric.

.. code-block:: python

    import numpy as np
    from datasets import load_metric

    metric = load_metric("accuracy")

    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        predictions = np.argmax(logits, axis=-1)
        return metric.compute(predictions=predictions, references=labels)

The compute function needs to receive a tuple (with logits and labels) and has to return a dictionary with string keys
(the name of the metric) and float values. It will be called at the end of each evaluation phase on the whole arrays of
predictions/labels.
170

171
To check if this works on practice, let's create a new :class:`~transformers.Trainer` with our fine-tuned model:
172

173
174
175
176
177
178
179
180
181
182
.. code-block:: python

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=small_train_dataset,
        eval_dataset=small_eval_dataset,
        compute_metrics=compute_metrics,
    )
    trainer.evaluate()
183

184
which showed an accuracy of 87.5% in our case.
185

186
187
If you want to fine-tune your model and regularly report the evaluation metrics (for instance at the end of each
epoch), here is how you should define your training arguments:
188
189

.. code-block:: python
Sylvain Gugger's avatar
Sylvain Gugger committed
190

191
192
193
194
195
    from transformers import TrainingArguments

    training_args = TrainingArguments("test_trainer", evaluation_strategy="epoch")

See the documentation of :class:`~transformers.TrainingArguments` for more options.
196
197


198
.. _keras:
199

200
Fine-tuning with Keras
Sylvain Gugger's avatar
Sylvain Gugger committed
201
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
202

203
Models can also be trained natively in TensorFlow using the Keras API. First, let's define our model:
204
205
206

.. code-block:: python

207
208
209
210
    import tensorflow as tf
    from transformers import TFAutoModelForSequenceClassification

    model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
211

212
213
214
Then we will need to convert our datasets from before in standard :obj:`tf.data.Dataset`. Since we have fixed shapes,
it can easily be done like this. First we remove the `"text"` column from our datasets and set them in TensorFlow
format:
215
216
217

.. code-block:: python

218
219
    tf_train_dataset = small_train_dataset.remove_columns(["text"]).with_format("tensorflow")
    tf_eval_dataset = small_eval_dataset.remove_columns(["text"]).with_format("tensorflow")
220

221
Then we convert everything in big tensors and use the :obj:`tf.data.Dataset.from_tensor_slices` method:
222
223

.. code-block:: python
Sylvain Gugger's avatar
Sylvain Gugger committed
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    train_features = {x: tf_train_dataset[x].to_tensor() for x in tokenizer.model_input_names}
    train_tf_dataset = tf.data.Dataset.from_tensor_slices((train_features, tf_train_dataset["label"]))
    train_tf_dataset = train_tf_dataset.shuffle(len(tf_train_dataset)).batch(8)

    eval_features = {x: tf_eval_dataset[x].to_tensor() for x in tokenizer.model_input_names}
    eval_tf_dataset = tf.data.Dataset.from_tensor_slices((eval_features, tf_eval_dataset["label"]))
    eval_tf_dataset = eval_tf_dataset.batch(8)

With this done, the model can then be compiled and trained as any Keras model:

.. code-block:: python

    model.compile(
        optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=tf.metrics.SparseCategoricalAccuracy(),
    )

    model.fit(train_tf_dataset, validation_data=eval_tf_dataset, epochs=3)
244

Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
With the tight interoperability between TensorFlow and PyTorch models, you can even save the model and then reload it
as a PyTorch model (or vice-versa):
247
248
249

.. code-block:: python

250
    from transformers import AutoModelForSequenceClassification
251

252
253
    model.save_pretrained("my_imdb_model")
    pytorch_model = AutoModelForSequenceClassification.from_pretrained("my_imdb_model", from_tf=True)
254

255
.. _pytorch_native:
256

257
Fine-tuning in native PyTorch
Sylvain Gugger's avatar
Sylvain Gugger committed
258
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
259

260
You might need to restart your notebook at this stage to free some memory, or excute the following code:
261
262
263

.. code-block:: python

264
265
266
267
    del model
    del pytorch_model
    del trainer
    torch.cuda.empty_cache()
268

269
270
271
Let's now see how to achieve the same results as in :ref:`trainer section <trainer>` in PyTorch. First we need to
define the dataloaders, which we will use to iterate over batches. We just need to apply a bit of post-processing to
our :obj:`tokenized_datasets` before doing that to:
272

273
274
275
- remove the columns corresponding to values the model does not expect (here the :obj:`"text"` column)
- rename the column :obj:`"label"` to :obj:`"labels"` (because the model expect the argument to be named :obj:`labels`)
- set the format of the datasets so they return PyTorch Tensors instead of lists.
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
Our `tokenized_datasets` has one method for each of those steps:

.. code-block:: python

    tokenized_datasets = tokenized_datasets.remove_columns(["text"])
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
    tokenized_datasets.set_format("torch")

    small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
    small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))

Now that this is done, we can easily define our dataloaders:

.. code-block:: python

    from torch.utils.data import DataLoader

    train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
    eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)

Next, we define our model:

.. code-block:: python

    from transformers import AutoModelForSequenceClassification

    model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)

We are almost ready to write our training loop, the only two things are missing are an optimizer and a learning rate
scheduler. The default optimizer used by the :class:`~transformers.Trainer` is :class:`~transformers.AdamW`:

.. code-block:: python

    from transformers import AdamW

    optimizer = AdamW(model.parameters(), lr=5e-5)

Finally, the learning rate scheduler used by default it just a linear decay form the maximum value (5e-5 here) to 0:

.. code-block:: python

    from transformers import get_scheduler
319

320
321
322
323
324
325
326
    num_epochs = 3
    num_training_steps = num_epochs * len(train_dataloader)
    lr_scheduler = get_scheduler(
        "linear",
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=num_training_steps
327
328
    )

329
330
331
332
333
334
One last thing, we will want to use the GPU if we have access to one (otherwise training might take several hours
instead of a couple of minutes). To do this, we define a :obj:`device` we will put our model and our batches on.

.. code-block:: python

    import torch
335

336
337
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)
338

339
340
We now are ready to train! To get some sense of when it will be finished, we add a progress bar over our number of
training steps, using the `tqdm` library.
341
342
343

.. code-block:: python

344
    from tqdm.auto import tqdm
345

346
    progress_bar = tqdm(range(num_training_steps))
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    model.train()
    for epoch in range(num_epochs):
        for batch in train_dataloader:
            batch = {k: v.to(device) for k, v in batch.items()}
            outputs = model(**batch)
            loss = outputs.loss
            loss.backward()

            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            progress_bar.update(1)

Note that if you are used to freezing the body of your pretrained model (like in computer vision) the above may seem a
bit strange, as we are directly fine-tuning the whole model without taking any precaution. It actually works better
this way for Transformers model (so this is not an oversight on our side). If you're not familiar with what "freezing
the body" of the model means, forget you read this paragraph.

Now to check the results, we need to write the evaluation loop. Like in the :ref:`trainer section <trainer>` we will
use a metric from the datasets library. Here we accumulate the predictions at each batch before computing the final
result when the loop is finished.
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
.. code-block:: python

    metric= load_metric("accuracy")
    model.eval()
    for batch in eval_dataloader:
        batch = {k: v.to(device) for k, v in batch.items()}
        with torch.no_grad():
            outputs = model(**batch)

        logits = outputs.logits
        predictions = torch.argmax(logits, dim=-1)
        metric.add_batch(predictions=predictions, references=batch["labels"])

    metric.compute()
384

385
386
387
388

.. _additional-resources:

Additional resources
Sylvain Gugger's avatar
Sylvain Gugger committed
389
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
390

391
To look at more fine-tuning examples you can refer to:
392

393
394
- `馃 Transformers Examples <https://github.com/huggingface/transformers/tree/master/examples>`__ which includes scripts
  to train on all common NLP tasks in PyTorch and TensorFlow.
395

396
397
- `馃 Transformers Notebooks <notebooks.html>`__ which contains various notebooks and in particular one per task (look
  for the `how to finetune a model on xxx`).