README.md 5.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<!---
Copyright 2021 NVIDIA Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# Huggingface QDQBERT Quantization Example

The QDQBERT model adds fake quantization (pair of QuantizeLinear/DequantizeLinear ops) to:
 * linear layer inputs and weights
 * matmul inputs
 * residual add inputs

In this example, we use QDQBERT model to do quantization on SQuAD task, including Quantization Aware Training (QAT), Post Training Quantization (PTQ) and inferencing using TensorRT.

Required:
- [pytorch-quantization toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization)
- [TensorRT >= 8.2](https://developer.nvidia.com/tensorrt)
- PyTorch >= 1.10.0

## Setup the environment with Dockerfile

Under the directory of `transformers/`, build the docker image:
33
```bash
34
35
36
37
docker build . -f examples/research_projects/quantization-qdqbert/Dockerfile -t bert_quantization:latest
```

Run the docker:
38
```bash
39
40
41
42
docker run --gpus all --privileged --rm -it --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 bert_quantization:latest
```

In the container:
43
```bash
44
45
46
47
48
49
50
cd transformers/examples/research_projects/quantization-qdqbert/
```

## Quantization Aware Training (QAT)

Calibrate the pretrained model and finetune with quantization awared:

51
```bash
52
53
54
55
56
57
58
59
60
61
62
python3 run_quant_qa.py \
  --model_name_or_path bert-base-uncased \
  --dataset_name squad \
  --max_seq_length 128 \
  --doc_stride 32 \
  --output_dir calib/bert-base-uncased \
  --do_calib \
  --calibrator percentile \
  --percentile 99.99
```

63
```bash
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
python3 run_quant_qa.py \
  --model_name_or_path calib/bert-base-uncased \
  --dataset_name squad \
  --do_train \
  --do_eval \
  --per_device_train_batch_size 12 \
  --learning_rate 4e-5 \
  --num_train_epochs 2 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --output_dir finetuned_int8/bert-base-uncased \
  --tokenizer_name bert-base-uncased \
  --save_steps 0
```

### Export QAT model to ONNX

To export the QAT model finetuned above:

83
```bash
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
python3 run_quant_qa.py \
  --model_name_or_path finetuned_int8/bert-base-uncased \
  --output_dir ./ \
  --save_onnx \
  --per_device_eval_batch_size 1 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
  --tokenizer_name bert-base-uncased
```

Use `--recalibrate-weights` to calibrate the weight ranges according to the quantizer axis. Use `--quant-per-tensor` for per tensor quantization (default is per channel).
Recalibrating will affect the accuracy of the model, but the change should be minimal (< 0.5 F1).

### Benchmark the INT8 QAT ONNX model inference with TensorRT using dummy input

100
```bash
101
102
103
trtexec --onnx=model.onnx --explicitBatch --workspace=16384 --int8 --shapes=input_ids:64x128,attention_mask:64x128,token_type_ids:64x128 --verbose
```

104
105
### Benchmark the INT8 QAT ONNX model inference with [ONNX Runtime-TRT](https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html) using dummy input

106
```bash
107
108
109
python3 ort-infer-benchmark.py
```

110
111
### Evaluate the INT8 QAT ONNX model inference with TensorRT

112
```bash
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
python3 evaluate-hf-trt-qa.py \
  --onnx_model_path=./model.onnx \
  --output_dir ./ \
  --per_device_eval_batch_size 64 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
  --tokenizer_name bert-base-uncased \
  --int8 \
  --seed 42
```

## Fine-tuning of FP32 model for comparison

Finetune a fp32 precision model with [transformers/examples/pytorch/question-answering/](../../pytorch/question-answering/):

129
```bash
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
python3 ../../pytorch/question-answering/run_qa.py \
  --model_name_or_path bert-base-uncased \
  --dataset_name squad \
  --per_device_train_batch_size 12 \
  --learning_rate 3e-5 \
  --num_train_epochs 2 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --output_dir ./finetuned_fp32/bert-base-uncased \
  --save_steps 0 \
  --do_train \
  --do_eval
```

## Post Training Quantization (PTQ)

### PTQ by calibrating and evaluating the finetuned FP32 model above:

148
```bash
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
python3 run_quant_qa.py \
  --model_name_or_path ./finetuned_fp32/bert-base-uncased \
  --dataset_name squad \
  --calibrator percentile \
  --percentile 99.99 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --output_dir ./calib/bert-base-uncased \
  --save_steps 0 \
  --do_calib \
  --do_eval
```

### Export the INT8 PTQ model to ONNX

164
```bash
165
166
167
168
169
170
171
172
173
174
175
176
177
python3 run_quant_qa.py \
  --model_name_or_path ./calib/bert-base-uncased \
  --output_dir ./ \
  --save_onnx \
  --per_device_eval_batch_size 1 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
  --tokenizer_name bert-base-uncased
```

### Evaluate the INT8 PTQ ONNX model inference with TensorRT

178
```bash
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
python3 evaluate-hf-trt-qa.py \
  --onnx_model_path=./model.onnx \
  --output_dir ./ \
  --per_device_eval_batch_size 64 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
  --tokenizer_name bert-base-uncased \
  --int8 \
  --seed 42
```

### Quantization options

Some useful options to support different implementations and optimizations. These should be specified for both calibration and finetuning.

|argument|description|
|--------|-----------|
|`--quant-per-tensor`| quantize weights with one quantization range per tensor |
|`--fuse-qkv` | use a single range (the max) for quantizing QKV weights and output activations  |
|`--clip-gelu N` | clip the output of GELU to a maximum of N when quantizing (e.g. 10) |
|`--disable-dropout` | disable dropout for consistent activation ranges |