test_modeling_fuyu.py 14.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Fuyu model. """

Pablo Montalvo's avatar
Pablo Montalvo committed
17
18
19
20
21
import io
import unittest

import requests

22
from transformers import FuyuConfig, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23
24
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from transformers.utils import cached_property
Pablo Montalvo's avatar
Pablo Montalvo committed
25

NielsRogge's avatar
NielsRogge committed
26
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Pablo Montalvo's avatar
Pablo Montalvo committed
27
28
29
30
31
32
33


if is_vision_available():
    from PIL import Image


if is_torch_available() and is_vision_available():
34
    from transformers import FuyuProcessor
Pablo Montalvo's avatar
Pablo Montalvo committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48


if is_torch_available():
    import torch

    from transformers import FuyuForCausalLM


class FuyuModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
NielsRogge's avatar
NielsRogge committed
49
50
        image_size=30,
        patch_size=15,
Pablo Montalvo's avatar
Pablo Montalvo committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        num_channels=3,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)

        config = self.get_config()

NielsRogge's avatar
NielsRogge committed
113
        return config, input_ids, input_mask, sequence_labels, token_labels
Pablo Montalvo's avatar
Pablo Montalvo committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    def get_config(self):
        return FuyuConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

    def create_and_check_model(
NielsRogge's avatar
NielsRogge committed
133
134
135
136
137
138
        self,
        config,
        input_ids,
        input_mask,
        sequence_labels,
        token_labels,
Pablo Montalvo's avatar
Pablo Montalvo committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    ):
        model = FuyuForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        input_mask,
        sequence_labels,
        token_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = FuyuForCausalLM(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        input_mask,
        sequence_labels,
        token_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = FuyuForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        input_mask,
        sequence_labels,
        token_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = FuyuForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
NielsRogge's avatar
NielsRogge committed
265
266
267
class FuyuModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (FuyuForCausalLM,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-to-text": FuyuForCausalLM} if is_torch_available() else {}
Pablo Montalvo's avatar
Pablo Montalvo committed
268

NielsRogge's avatar
NielsRogge committed
269
270
271
272
273
    test_head_masking = False
    test_pruning = False
    test_cpu_offload = False
    test_disk_offload = False
    test_model_parallel = False
Pablo Montalvo's avatar
Pablo Montalvo committed
274
275

    def setUp(self):
NielsRogge's avatar
NielsRogge committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        self.model_tester = FuyuModelTester(self)

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

Yih-Dar's avatar
Yih-Dar committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    # TODO: Fix me (once this model gets more usage)
    @unittest.skip("Does not work on the tiny model.")
    def test_disk_offload_bin(self):
        super().test_disk_offload()

    # TODO: Fix me (once this model gets more usage)
    @unittest.skip("Does not work on the tiny model.")
    def test_disk_offload_safetensors(self):
        super().test_disk_offload()

    # TODO: Fix me (once this model gets more usage)
    @unittest.skip("Does not work on the tiny model.")
    def test_model_parallelism(self):
        super().test_model_parallelism()

NielsRogge's avatar
NielsRogge committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

@slow
@require_torch_gpu
class FuyuModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_processor(self):
        return FuyuProcessor.from_pretrained("adept/fuyu-8b")

    @cached_property
    def default_model(self):
        return FuyuForCausalLM.from_pretrained("adept/fuyu-8b")

    def test_greedy_generation(self):
        processor = self.default_processor
        model = self.default_model

        url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
        image = Image.open(io.BytesIO(requests.get(url).content))
Pablo Montalvo's avatar
Pablo Montalvo committed
329
330

        text_prompt_coco_captioning = "Generate a coco-style caption.\n"
NielsRogge's avatar
NielsRogge committed
331
332
333
334
335
336
337

        inputs = processor(text=text_prompt_coco_captioning, images=image, return_tensors="pt")
        generated_ids = model.generate(**inputs, max_new_tokens=10)

        # take the last 8 tokens (in order to skip special \n\x04 characters) and decode them
        generated_text = processor.batch_decode(generated_ids[:, -8:], skip_special_tokens=True)[0]
        self.assertEqual(generated_text, "A blue bus parked on the side of a road.")
Pablo Montalvo's avatar
Pablo Montalvo committed
338
339
340
341


"""
    @slow
342
    @require_torch_accelerator
Pablo Montalvo's avatar
Pablo Montalvo committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    def test_model_8b_chat_greedy_generation_bus_color(self):
        EXPECTED_TEXT_COMPLETION = "The bus is blue.\n|ENDOFTEXT|"
        text_prompt_bus_color = "What color is the bus?\n"
        model_inputs_bus_color = self.processor(text=text_prompt_bus_color, images=self.bus_image_pil)

        generated_tokens = self.model.generate(**model_inputs_bus_color, max_new_tokens=10)
        text = self.processor.tokenizer.batch_decode(generated_tokens)
        end_sequence = text[0].split("\x04")[1]
        clean_sequence = (
            end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
            if "|ENDOFTEXT|" in end_sequence
            else end_sequence
        )
        self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence)

    @slow
359
    @require_torch_accelerator
Pablo Montalvo's avatar
Pablo Montalvo committed
360
    def test_model_8b_chat_greedy_generation_chart_vqa(self):
361
        EXPECTED_TEXT_TOKENS = ["The","life expectancy","at","birth","of male","s in","","20","18","is","","80",".","7",".","\n","|ENDOFTEXT|",]  # fmt: skip
Pablo Montalvo's avatar
Pablo Montalvo committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        expected_text_completion = " ".join(EXPECTED_TEXT_TOKENS)  # TODO make sure the end string matches

        text_prompt_chart_vqa = "What is the highest life expectancy at birth of male?\n"

        chart_image_url = (
            "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/chart.png"
        )
        chart_image_pil = Image.open(io.BytesIO(requests.get(chart_image_url).content))

        model_inputs_chart_vqa = self.processor(text=text_prompt_chart_vqa, images=chart_image_pil)
        generated_tokens = self.model.generate(**model_inputs_chart_vqa, max_new_tokens=10)
        text = self.processor.tokenizer.batch_decode(generated_tokens)
        end_sequence = text[0].split("\x04")[1]
        clean_sequence = (
            end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
            if "|ENDOFTEXT|" in end_sequence
            else end_sequence
        )
        self.assertEqual(expected_text_completion, clean_sequence)

    @slow
383
    @require_torch_accelerator
Pablo Montalvo's avatar
Pablo Montalvo committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    def test_model_8b_chat_greedy_generation_bounding_box(self):
        EXPECTED_TEXT_COMPLETION = "\x00194213202244\x01|ENDOFTEXT|"
        text_prompt_bbox = "When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\\nWilliams"  # noqa: E231

        bbox_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bbox_sample_image.png"
        bbox_image_pil = Image.open(io.BytesIO(requests.get(bbox_image_url).content))

        model_inputs_bbox = self.processor(text=text_prompt_bbox, images=bbox_image_pil)
        generated_tokens = self.model.generate(**model_inputs_bbox, max_new_tokens=10)
        text = self.processor.tokenizer.batch_decode(generated_tokens)
        end_sequence = text[0].split("\x04")[1]
        clean_sequence = (
            end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
            if "|ENDOFTEXT|" in end_sequence
            else end_sequence
        )
        self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence)
"""