"docs/source/es/index.md" did not exist on "2411f0e465e761790879e605a4256f3d4afb7f82"
test_modeling_instructblipvideo.py 22.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch InstructBlipVideo model."""

import inspect
import tempfile
import unittest

import numpy as np
from huggingface_hub import hf_hub_download

from transformers import (
    CONFIG_MAPPING,
    InstructBlipVideoConfig,
    InstructBlipVideoProcessor,
    InstructBlipVideoQFormerConfig,
    InstructBlipVideoVisionConfig,
)
from transformers.testing_utils import (
    require_accelerate,
    require_bitsandbytes,
    require_torch,
    require_vision,
    slow,
    torch_device,
)
from transformers.utils import is_torch_available, is_vision_available

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)


if is_torch_available():
    import torch
    from torch import nn

    from transformers import InstructBlipVideoForConditionalGeneration, InstructBlipVideoVisionModel


if is_vision_available():
    pass


class InstructBlipVideoVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        frames=4,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
        projection_dim=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=1e-10,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.frames = frames
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

        # in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor(
            [self.batch_size * self.frames, self.num_channels, self.image_size, self.image_size]
        )
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return InstructBlipVideoVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            projection_dim=self.projection_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = InstructBlipVideoVisionModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size * self.frames, num_patches + 1, self.hidden_size)
        )
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.frames, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class InstructBlipVideoVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as InstructBlipVideo's vision encoder does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (InstructBlipVideoVisionModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = InstructBlipVideoVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=InstructBlipVideoVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="InstructBlipVideo's vision encoder does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="InstructBlipVideo's vision encoder is an nn.Embeddings layer")
    def test_model_get_set_embeddings(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(
        reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training"
    )
    def test_training(self):
        pass

    @unittest.skip(
        reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="InstructBlipVideoVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="InstructBlipVideoVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model_name = "Salesforce/instructblip-vicuna-7b"
        model = InstructBlipVideoVisionModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


class InstructBlipVideoQFormerModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        projection_dim=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        bos_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
            qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

        config = self.get_config()

        return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask

    def get_config(self):
        return InstructBlipVideoQFormerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            projection_dim=self.projection_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            bos_token_id=self.bos_token_id,
        )


# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class InstructBlipVideoTextModelDecoderOnlyTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=100,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        embed_dim=16,
        num_labels=3,
        word_embed_proj_dim=16,
        type_sequence_label_size=2,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.embed_dim = embed_dim
        self.num_labels = num_labels
        self.type_sequence_label_size = type_sequence_label_size
        self.word_embed_proj_dim = word_embed_proj_dim
        self.is_encoder_decoder = False

    def prepare_config_and_inputs(self):
        config = self.get_config()

        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        attention_mask = input_ids.ne(self.pad_token_id)

        return config, input_ids, attention_mask

    def get_config(self):
        return CONFIG_MAPPING["opt"](
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            embed_dim=self.embed_dim,
            is_encoder_decoder=False,
            word_embed_proj_dim=self.word_embed_proj_dim,
        )


# this model tester uses a decoder-only language model (OPT)
class InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester:
    def __init__(
        self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
    ):
        if vision_kwargs is None:
            vision_kwargs = {}
        if qformer_kwargs is None:
            qformer_kwargs = {}
        if text_kwargs is None:
            text_kwargs = {}

        self.parent = parent
        self.vision_model_tester = InstructBlipVideoVisionModelTester(parent, **vision_kwargs)
        self.qformer_model_tester = InstructBlipVideoQFormerModelTester(parent, **qformer_kwargs)
        self.text_model_tester = InstructBlipVideoTextModelDecoderOnlyTester(parent, **text_kwargs)
        self.batch_size = self.text_model_tester.batch_size  # need bs for batching_equivalence test
        self.seq_length = self.text_model_tester.seq_length  # need seq_length for common tests
        self.is_training = is_training
        self.num_query_tokens = num_query_tokens

    def prepare_config_and_inputs(self):
        _, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
        _, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
        _, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        frames = self.vision_model_tester.frames
        _, c, h, w = pixel_values.shape
        pixel_values = pixel_values.reshape(-1, frames, c, h, w)

        config = self.get_config()

        return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values

    def get_config(self):
        return InstructBlipVideoConfig.from_vision_qformer_text_configs(
            vision_config=self.vision_model_tester.get_config(),
            qformer_config=self.qformer_model_tester.get_config(),
            text_config=self.text_model_tester.get_config(),
            num_query_tokens=self.num_query_tokens,
        )

    def create_and_check_for_conditional_generation(
        self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
    ):
        model = InstructBlipVideoForConditionalGeneration(config).to(torch_device).eval()
        with torch.no_grad():
            result = model(
                pixel_values,
                input_ids=input_ids,
                attention_mask=attention_mask,
                qformer_input_ids=qformer_input_ids,
                qformer_attention_mask=qformer_attention_mask,
            )

        expected_seq_length = (
            self.num_query_tokens * self.vision_model_tester.frames
        ) + self.text_model_tester.seq_length
        self.parent.assertEqual(
            result.logits.shape,
            (self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "pixel_values": pixel_values,
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "qformer_input_ids": qformer_input_ids,
            "qformer_attention_mask": qformer_attention_mask,
            "labels": input_ids,
        }
        return config, inputs_dict


@require_torch
class InstructBlipVideoForConditionalGenerationDecoderOnlyTest(
    ModelTesterMixin, GenerationTesterMixin, unittest.TestCase
):
    all_model_classes = (InstructBlipVideoForConditionalGeneration,) if is_torch_available() else ()
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester(self)

    def test_for_conditional_generation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)

    @unittest.skip(reason="Hidden_states is tested in individual model tests")
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="InstructBlipVideoForConditionalGeneration doesn't support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Tied weights are tested in individual model tests")
    def test_tied_weights_keys(self):
        pass

    @unittest.skip(reason="Retain_grad is tested in individual model tests")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="InstructBlipVideoModel does not have input/output embeddings")
    def test_model_common_attributes(self):
        pass

    @unittest.skip(reason="There's no base InstructBlipVideoModel")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="There's no base InstructBlipVideoModel")
    def test_save_load_fast_init_to_base(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_load_vision_qformer_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save InstructBlipVideoConfig and check if we can load InstructBlipVideoVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = InstructBlipVideoVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save InstructBlipVideoConfig and check if we can load InstructBlipVideoQFormerConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            qformer_config = InstructBlipVideoQFormerConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())

    @slow
    def test_model_from_pretrained(self):
        model_name = "Salesforce/instructblip-vicuna-7b"
        model = InstructBlipVideoForConditionalGeneration.from_pretrained(model_name)
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_video():
    video_file = hf_hub_download(
        repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
    )
    video = np.load(video_file)[::2]  # sample every 2nd frame to get 4 frames total
    return video


@require_vision
@require_torch
@require_bitsandbytes
@require_accelerate
@slow
class InstructBlipVideoModelIntegrationTest(unittest.TestCase):
    def test_inference_vicuna_7b(self):
        processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
        model = InstructBlipVideoForConditionalGeneration.from_pretrained(
            "Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True
        )

        clip = prepare_video()
        prompt = "Explain what is happening in this short video."
        inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, torch.float16)

        # verify generation
        outputs = model.generate(**inputs, max_new_tokens=30)
        generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
        self.assertEqual(
            generated_text,
            "a baby girl wearing glasses is reading a book on the bed 1080p",
        )