test_modeling_vision_text_dual_encoder.py 21 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch VisionTextDualEncoder model. """


import collections
import tempfile
import unittest

import numpy as np

from transformers.file_utils import is_flax_available, is_torch_available, is_vision_available
from transformers.testing_utils import is_pt_flax_cross_test, require_torch, require_vision, slow, torch_device

from .test_modeling_bert import BertModelTester
from .test_modeling_clip import CLIPVisionModelTester
from .test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
from .test_modeling_deit import DeiTModelTester
from .test_modeling_roberta import RobertaModelTester
from .test_modeling_vit import ViTModelTester


if is_torch_available():
    import torch

    from transformers import (
        BertModel,
        CLIPVisionModel,
        DeiTModel,
        RobertaModel,
        VisionTextDualEncoderConfig,
        VisionTextDualEncoderModel,
        ViTModel,
    )

if is_flax_available():
    from transformers import FlaxVisionTextDualEncoderModel
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

if is_vision_available():
    from PIL import Image

    from transformers import VisionTextDualEncoderProcessor


# Inspired by
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
# From PyTorch internals
def to_2tuple(x):
    if isinstance(x, collections.abc.Iterable):
        return x
    return (x, x)


@require_torch
class VisionTextDualEncoderMixin:
    def get_vision_text_model(self, config, text_config):
        pass

    def prepare_config_and_inputs(self):
        pass

    def get_pretrained_model_and_inputs(self):
        pass

    def check_model_from_pretrained_configs(
        self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
    ):
        config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config)

        model = VisionTextDualEncoderModel(config)
        model.to(torch_device)
        model.eval()

        output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)

        self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim))
        self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim))

    def check_vision_text_dual_encoder_model(
        self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
    ):
        vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
        model = VisionTextDualEncoderModel(vision_model=vision_model, text_model=text_model)
        model.to(torch_device)
        model.eval()

        output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)

        self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim))
        self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim))

    def check_vision_text_dual_encoder_from_pretrained(
        self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
    ):

        vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
        kwargs = {"vision_model": vision_model, "text_model": text_model}
        model = VisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs)
        model.to(torch_device)
        model.eval()

        output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)

        self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim))
        self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim))

    def check_save_load(self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs):
        vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
        model = VisionTextDualEncoderModel(vision_model=vision_model, text_model=text_model)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)
            out_1 = output[0].cpu().numpy()

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = VisionTextDualEncoderModel.from_pretrained(tmpdirname).eval()
                model.to(torch_device)

                after_output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask)
                out_2 = after_output[0].cpu().numpy()
                max_diff = np.amax(np.abs(out_2 - out_1))
                self.assertLessEqual(max_diff, 1e-5)

    def check_vision_text_output_attention(
        self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
    ):
        vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
        model = VisionTextDualEncoderModel(vision_model=vision_model, text_model=text_model)
        model.to(torch_device)
        model.eval()

        output = model(
            input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, output_attentions=True
        )

        vision_attentions = output.vision_model_output.attentions
        self.assertEqual(len(vision_attentions), vision_config.num_hidden_layers)

        # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(vision_model.config.image_size)
        patch_size = to_2tuple(vision_model.config.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = num_patches + 1
        self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len))

        text_attentions = output.text_model_output.attentions
        self.assertEqual(len(text_attentions), text_config.num_hidden_layers)

        self.assertEqual(
            text_attentions[0].shape[-3:],
            (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),
        )

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    def check_pt_flax_equivalence(self, pt_model, fx_model, input_ids, attention_mask, pixel_values, **kwargs):

        pt_model.to(torch_device)
        pt_model.eval()

        # prepare inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values}
        pt_inputs = inputs_dict
        flax_inputs = {k: v.numpy() for k, v in pt_inputs.items()}

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs).to_tuple()

        fx_outputs = fx_model(**flax_inputs).to_tuple()
        self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
        for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
            self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

        # PT -> Flax
        with tempfile.TemporaryDirectory() as tmpdirname:
            pt_model.save_pretrained(tmpdirname)
            fx_model_loaded = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname, from_pt=True)

        fx_outputs_loaded = fx_model_loaded(**flax_inputs).to_tuple()
        self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
        for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]):
            self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

        # Flax -> PT
        with tempfile.TemporaryDirectory() as tmpdirname:
            fx_model.save_pretrained(tmpdirname)
            pt_model_loaded = VisionTextDualEncoderModel.from_pretrained(tmpdirname, from_flax=True)

        pt_model_loaded.to(torch_device)
        pt_model_loaded.eval()

        with torch.no_grad():
            pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

        self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch")
        for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]):
            self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 4e-2)

    def check_equivalence_pt_to_flax(self, vision_config, text_config, inputs_dict):

        config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config)

        pt_model = VisionTextDualEncoderModel(config)
        fx_model = FlaxVisionTextDualEncoderModel(config)

        fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
        fx_model.params = fx_state

        self.check_pt_flax_equivalence(pt_model, fx_model, **inputs_dict)

    def check_equivalence_flax_to_pt(self, vision_config, text_config, inputs_dict):

        config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config)

        pt_model = VisionTextDualEncoderModel(config)
        fx_model = FlaxVisionTextDualEncoderModel(config)

        pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

        self.check_pt_flax_equivalence(pt_model, fx_model, **inputs_dict)

    def test_vision_text_dual_encoder_model(self):
        inputs_dict = self.prepare_config_and_inputs()
        self.check_vision_text_dual_encoder_model(**inputs_dict)

    def test_model_from_pretrained_configs(self):
        inputs_dict = self.prepare_config_and_inputs()
        self.check_model_from_pretrained_configs(**inputs_dict)

    def test_vision_text_dual_encoder_from_pretrained(self):
        inputs_dict = self.prepare_config_and_inputs()
        self.check_vision_text_dual_encoder_from_pretrained(**inputs_dict)

    def test_save_load(self):
        inputs_dict = self.prepare_config_and_inputs()
        self.check_save_load(**inputs_dict)

    def test_vision_text_output_attention(self):
        inputs_dict = self.prepare_config_and_inputs()
        self.check_vision_text_output_attention(**inputs_dict)

    @is_pt_flax_cross_test
    def test_pt_flax_equivalence(self):

        config_inputs_dict = self.prepare_config_and_inputs()
        vision_config = config_inputs_dict.pop("vision_config")
        text_config = config_inputs_dict.pop("text_config")

        inputs_dict = config_inputs_dict

        self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict)
        self.check_equivalence_flax_to_pt(vision_config, text_config, inputs_dict)

    @slow
    def test_real_model_save_load_from_pretrained(self):
        model_2, inputs = self.get_pretrained_model_and_inputs()
        model_2.to(torch_device)

        with torch.no_grad():
            outputs = model_2(**inputs)
            out_2 = outputs[0].cpu().numpy()

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = VisionTextDualEncoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

                after_outputs = model_1(**inputs)
                out_1 = after_outputs[0].cpu().numpy()
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)


@require_torch
class ViTBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase):
    def get_pretrained_model_and_inputs(self):
        model = VisionTextDualEncoderModel.from_vision_text_pretrained(
            "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert"
        )
        batch_size = 13
        pixel_values = floats_tensor(
            [
                batch_size,
                model.vision_model.config.num_channels,
                model.vision_model.config.image_size,
                model.vision_model.config.image_size,
            ]
        )
        input_ids = ids_tensor([batch_size, 4], model.text_model.config.vocab_size)
        attention_mask = random_attention_mask([batch_size, 4])
        inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}

        return model, inputs

    def get_vision_text_model(self, vision_config, text_config):
        vision_model = ViTModel(vision_config).eval()
        text_model = BertModel(text_config).eval()
        return vision_model, text_model

    def prepare_config_and_inputs(self):
        vit_model_tester = ViTModelTester(self)
        bert_model_tester = BertModelTester(self)
        vision_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
        text_config_and_inputs = bert_model_tester.prepare_config_and_inputs()

        vision_config, pixel_values, _ = vision_config_and_inputs

        (
            text_config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = text_config_and_inputs

        return {
            "text_config": text_config,
            "vision_config": vision_config,
            "pixel_values": pixel_values,
            "attention_mask": input_mask,
            "text_config": text_config,
            "input_ids": input_ids,
            "text_token_type_ids": token_type_ids,
            "text_sequence_labels": sequence_labels,
            "text_token_labels": token_labels,
            "text_choice_labels": choice_labels,
        }


@require_torch
class DeiTRobertaModelTest(VisionTextDualEncoderMixin, unittest.TestCase):
    def get_pretrained_model_and_inputs(self):
        model = VisionTextDualEncoderModel.from_vision_text_pretrained(
            "hf-internal-testing/tiny-random-deit", "hf-internal-testing/tiny-random-roberta"
        )
        batch_size = 13
        pixel_values = floats_tensor(
            [
                batch_size,
                model.vision_model.config.num_channels,
                model.vision_model.config.image_size,
                model.vision_model.config.image_size,
            ]
        )
        input_ids = ids_tensor([batch_size, 4], model.text_model.config.vocab_size)
        attention_mask = random_attention_mask([batch_size, 4])
        inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}

        return model, inputs

    def check_vision_text_output_attention(
        self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs
    ):
        vision_model, text_model = self.get_vision_text_model(vision_config, text_config)
        model = VisionTextDualEncoderModel(vision_model=vision_model, text_model=text_model)
        model.to(torch_device)
        model.eval()

        output = model(
            input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, output_attentions=True
        )

        vision_attentions = output.vision_model_output.attentions
        self.assertEqual(len(vision_attentions), vision_config.num_hidden_layers)

        # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
        image_size = to_2tuple(vision_model.config.image_size)
        patch_size = to_2tuple(vision_model.config.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = num_patches + 2
        self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len))

        text_attentions = output.text_model_output.attentions
        self.assertEqual(len(text_attentions), text_config.num_hidden_layers)

        self.assertEqual(
            text_attentions[0].shape[-3:],
            (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),
        )

    def get_vision_text_model(self, vision_config, text_config):
        vision_model = DeiTModel(vision_config).eval()
        text_model = RobertaModel(text_config).eval()
        return vision_model, text_model

    def prepare_config_and_inputs(self):
        vit_model_tester = DeiTModelTester(self)
        bert_model_tester = RobertaModelTester(self)
        vision_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
        text_config_and_inputs = bert_model_tester.prepare_config_and_inputs()

        vision_config, pixel_values, _ = vision_config_and_inputs

        (
            text_config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = text_config_and_inputs

        return {
            "text_config": text_config,
            "vision_config": vision_config,
            "pixel_values": pixel_values,
            "attention_mask": input_mask,
            "text_config": text_config,
            "input_ids": input_ids,
            "text_token_type_ids": token_type_ids,
            "text_sequence_labels": sequence_labels,
            "text_token_labels": token_labels,
            "text_choice_labels": choice_labels,
        }

    # skip as DeiT is not available in Flax
    def test_pt_flax_equivalence(self):
        pass


@require_torch
class CLIPVisionBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase):
    def get_pretrained_model_and_inputs(self):
        model = VisionTextDualEncoderModel.from_vision_text_pretrained(
            "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert"
        )
        batch_size = 13
        pixel_values = floats_tensor(
            [
                batch_size,
                model.vision_model.config.num_channels,
                model.vision_model.config.image_size,
                model.vision_model.config.image_size,
            ]
        )
        input_ids = ids_tensor([batch_size, 4], model.text_model.config.vocab_size)
        attention_mask = random_attention_mask([batch_size, 4])
        inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}

        return model, inputs

    def get_vision_text_model(self, vision_config, text_config):
        vision_model = CLIPVisionModel(vision_config).eval()
        text_model = BertModel(text_config).eval()
        return vision_model, text_model

    def prepare_config_and_inputs(self):
        clip_model_tester = CLIPVisionModelTester(self)
        bert_model_tester = BertModelTester(self)
        vision_config_and_inputs = clip_model_tester.prepare_config_and_inputs()
        text_config_and_inputs = bert_model_tester.prepare_config_and_inputs()

        vision_config, pixel_values = vision_config_and_inputs

        (
            text_config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = text_config_and_inputs

        return {
            "text_config": text_config,
            "vision_config": vision_config,
            "pixel_values": pixel_values,
            "attention_mask": input_mask,
            "text_config": text_config,
            "input_ids": input_ids,
            "text_token_type_ids": token_type_ids,
            "text_sequence_labels": sequence_labels,
            "text_token_labels": token_labels,
            "text_choice_labels": choice_labels,
        }


@require_vision
@require_torch
class VisionTextDualEncoderIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model = VisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1)
        processor = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian")

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = processor(
            text=["una foto di un gatto", "una foto di un cane"], images=image, padding=True, return_tensors="pt"
        )

        outputs = model(**inputs)

        # verify the logits
        self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]))
        self.assertEqual(
            outputs.logits_per_text.shape,
            (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),
        )

        expected_logits = torch.tensor([[1.2284727, 0.3104122]])

        self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))