test_image_processing_zoedepth.py 7.46 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.file_utils import is_vision_available
from transformers.testing_utils import require_torch, require_vision

from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs


if is_vision_available():
    from transformers import ZoeDepthImageProcessor


class ZoeDepthImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        ensure_multiple_of=32,
        keep_aspect_ratio=False,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
        do_pad=False,
    ):
49
        super().__init__()
NielsRogge's avatar
NielsRogge committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        size = size if size is not None else {"height": 18, "width": 18}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.ensure_multiple_of = ensure_multiple_of
        self.keep_aspect_ratio = keep_aspect_ratio
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_pad = do_pad

    def prepare_image_processor_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "ensure_multiple_of": self.ensure_multiple_of,
            "keep_aspect_ratio": self.keep_aspect_ratio,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_pad": self.do_pad,
        }

    def expected_output_image_shape(self, images):
        return self.num_channels, self.ensure_multiple_of, self.ensure_multiple_of

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class ZoeDepthImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = ZoeDepthImageProcessor if is_vision_available() else None

    def setUp(self):
        super().setUp()

        self.image_processor_tester = ZoeDepthImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "ensure_multiple_of"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "do_pad"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})

    def test_ensure_multiple_of(self):
        # Test variable by turning off all other variables which affect the size, size which is not multiple of 32
        image = np.zeros((489, 640, 3))

        size = {"height": 380, "width": 513}
        multiple = 32
        image_processor = ZoeDepthImageProcessor(
            do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False
        )
        pixel_values = image_processor(image, return_tensors="pt").pixel_values

        self.assertEqual(list(pixel_values.shape), [1, 3, 384, 512])
        self.assertTrue(pixel_values.shape[2] % multiple == 0)
        self.assertTrue(pixel_values.shape[3] % multiple == 0)

        # Test variable by turning off all other variables which affect the size, size which is already multiple of 32
        image = np.zeros((511, 511, 3))

        height, width = 512, 512
        size = {"height": height, "width": width}
        multiple = 32
        image_processor = ZoeDepthImageProcessor(
            do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False
        )
        pixel_values = image_processor(image, return_tensors="pt").pixel_values

        self.assertEqual(list(pixel_values.shape), [1, 3, height, width])
        self.assertTrue(pixel_values.shape[2] % multiple == 0)
        self.assertTrue(pixel_values.shape[3] % multiple == 0)

    def test_keep_aspect_ratio(self):
        # Test `keep_aspect_ratio=True` by turning off all other variables which affect the size
        height, width = 489, 640
        image = np.zeros((height, width, 3))

        size = {"height": 512, "width": 512}
        image_processor = ZoeDepthImageProcessor(do_pad=False, keep_aspect_ratio=True, size=size, ensure_multiple_of=1)
        pixel_values = image_processor(image, return_tensors="pt").pixel_values

        # As can be seen, the image is resized to the maximum size that fits in the specified size
        self.assertEqual(list(pixel_values.shape), [1, 3, 512, 670])

        # Test `keep_aspect_ratio=False` by turning off all other variables which affect the size
        image_processor = ZoeDepthImageProcessor(
            do_pad=False, keep_aspect_ratio=False, size=size, ensure_multiple_of=1
        )
        pixel_values = image_processor(image, return_tensors="pt").pixel_values

        # As can be seen, the size is respected
        self.assertEqual(list(pixel_values.shape), [1, 3, size["height"], size["width"]])

        # Test `keep_aspect_ratio=True` with `ensure_multiple_of` set
        image = np.zeros((489, 640, 3))

        size = {"height": 511, "width": 511}
        multiple = 32
        image_processor = ZoeDepthImageProcessor(size=size, keep_aspect_ratio=True, ensure_multiple_of=multiple)

        pixel_values = image_processor(image, return_tensors="pt").pixel_values

        self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672])
        self.assertTrue(pixel_values.shape[2] % multiple == 0)
        self.assertTrue(pixel_values.shape[3] % multiple == 0)