test_image_processing_vitmatte.py 8.93 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest
18
import warnings
NielsRogge's avatar
NielsRogge committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch


if is_vision_available():
    from PIL import Image

    from transformers import VitMatteImageProcessor


class VitMatteImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_rescale=True,
        rescale_factor=0.5,
        do_pad=True,
        size_divisibility=10,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
55
        super().__init__()
NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.size_divisibility = size_divisibility
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

    def prepare_image_processor_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
            "size_divisibility": self.size_divisibility,
        }

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class VitMatteImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = VitMatteImageProcessor if is_vision_available() else None

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
99
        super().setUp()
NielsRogge's avatar
NielsRogge committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        self.image_processor_tester = VitMatteImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "do_pad"))
        self.assertTrue(hasattr(image_processing, "size_divisibility"))

    def test_call_numpy(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input (image processor does not support batched inputs)
        image = image_inputs[0]
        trimap = np.random.randint(0, 3, size=image.shape[:2])
        encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values

        # Verify that width and height can be divided by size_divisibility
        self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
        self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)

    def test_call_pytorch(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input (image processor does not support batched inputs)
        image = image_inputs[0]
        trimap = np.random.randint(0, 3, size=image.shape[:2])
        encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values

        # Verify that width and height can be divided by size_divisibility
        self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
        self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)

    def test_call_pil(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input (image processor does not support batched inputs)
        image = image_inputs[0]
        trimap = np.random.randint(0, 3, size=image.size[::-1])
        encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values

        # Verify that width and height can be divided by size_divisibility
        self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
        self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)

    def test_call_numpy_4_channels(self):
        # Test that can process images which have an arbitrary number of channels
        # Initialize image_processing
        image_processor = self.image_processing_class(**self.image_processor_dict)

        # create random numpy tensors
        self.image_processor_tester.num_channels = 4
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)

        # Test not batched input (image processor does not support batched inputs)
        image = image_inputs[0]
        trimap = np.random.randint(0, 3, size=image.shape[:2])
        encoded_images = image_processor(
            images=image,
            trimaps=trimap,
            input_data_format="channels_first",
            image_mean=0,
            image_std=1,
            return_tensors="pt",
        ).pixel_values

        # Verify that width and height can be divided by size_divisibility
        self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
        self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)

    def test_padding(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        image = np.random.randn(3, 249, 491)
        images = image_processing.pad_image(image)
        assert images.shape == (3, 256, 512)
198
199
200
201

        image = np.random.randn(3, 249, 512)
        images = image_processing.pad_image(image)
        assert images.shape == (3, 256, 512)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def test_image_processor_preprocess_arguments(self):
        # vitmatte require additional trimap input for image_processor
        # that is why we override original common test

        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class(**self.image_processor_dict)
            image = self.image_processor_tester.prepare_image_inputs()[0]
            trimap = np.random.randint(0, 3, size=image.size[::-1])

            with warnings.catch_warnings(record=True) as raised_warnings:
                warnings.simplefilter("always")
                image_processor(image, trimaps=trimap, extra_argument=True)

            messages = " ".join([str(w.message) for w in raised_warnings])
            self.assertGreaterEqual(len(raised_warnings), 1)
            self.assertIn("extra_argument", messages)