test_image_processing_swin2sr.py 7.35 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import Swin2SRImageProcessor
    from transformers.image_transforms import get_image_size


class Swin2SRImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
        pad_size=8,
    ):
51
        super().__init__()
NielsRogge's avatar
NielsRogge committed
52
53
54
55
56
57
58
59
60
61
62
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.pad_size = pad_size

63
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
64
65
66
67
68
69
70
        return {
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
            "pad_size": self.pad_size,
        }

71
72
    def expected_output_image_shape(self, images):
        img = images[0]
NielsRogge's avatar
NielsRogge committed
73

74
75
        if isinstance(img, Image.Image):
            input_width, input_height = img.size
76
77
        elif isinstance(img, np.ndarray):
            input_height, input_width = img.shape[-3:-1]
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        else:
            input_height, input_width = img.shape[-2:]

        pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height
        pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width

        return self.num_channels, input_height + pad_height, input_width + pad_width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )
NielsRogge's avatar
NielsRogge committed
96
97
98
99


@require_torch
@require_vision
100
class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
101
    image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
102
103

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
104
        super().setUp()
105
        self.image_processor_tester = Swin2SRImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
106
107

    @property
108
109
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
110

111
112
113
114
115
116
    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_rescale"))
        self.assertTrue(hasattr(image_processor, "rescale_factor"))
        self.assertTrue(hasattr(image_processor, "do_pad"))
        self.assertTrue(hasattr(image_processor, "pad_size"))
NielsRogge's avatar
NielsRogge committed
117
118
119

    def calculate_expected_size(self, image):
        old_height, old_width = get_image_size(image)
120
        size = self.image_processor_tester.pad_size
NielsRogge's avatar
NielsRogge committed
121
122
123
124
125

        pad_height = (old_height // size + 1) * size - old_height
        pad_width = (old_width // size + 1) * size - old_width
        return old_height + pad_height, old_width + pad_width

126
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
127
    def test_call_pil(self):
128
129
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
130
        # create random PIL images
131
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
132
133
134
135
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
136
137
138
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
139

140
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
141
    def test_call_numpy(self):
142
143
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
144
        # create random numpy tensors
145
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
146
147
148
149
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
150
151
152
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
153

amyeroberts's avatar
amyeroberts committed
154
155
156
157
158
159
160
161
162
163
164
165
    # Swin2SRImageProcessor does not support batched input
    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processor_tester.num_channels = 4
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = image_processing(
166
            image_inputs[0], return_tensors="pt", input_data_format="channels_last"
amyeroberts's avatar
amyeroberts committed
167
168
169
170
171
        ).pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
        self.image_processor_tester.num_channels = 3

172
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
173
    def test_call_pytorch(self):
174
175
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
176
        # create random PyTorch tensors
177
178
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

NielsRogge's avatar
NielsRogge committed
179
180
181
182
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
183
184
185
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))