"docs/source/en/model_doc/bert-generation.mdx" did not exist on "e13f72fbff648324afc6d6ba12e14bc9928f8c79"
test_image_processing_glpn.py 6.7 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import GLPNImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class GLPNImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
46
47
48
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size_divisor=32,
        do_rescale=True,
    ):
49
        super().__init__()
NielsRogge's avatar
NielsRogge committed
50
51
52
53
54
55
56
57
58
59
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size_divisor = size_divisor
        self.do_rescale = do_rescale

60
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
61
62
63
64
65
66
        return {
            "do_resize": self.do_resize,
            "size_divisor": self.size_divisor,
            "do_rescale": self.do_rescale,
        }

67
68
69
    def expected_output_image_shape(self, images):
        if isinstance(images[0], Image.Image):
            width, height = images[0].size
70
71
        elif isinstance(images[0], np.ndarray):
            height, width = images[0].shape[0], images[0].shape[1]
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        else:
            height, width = images[0].shape[1], images[0].shape[2]

        height = height // self.size_divisor * self.size_divisor
        width = width // self.size_divisor * self.size_divisor

        return self.num_channels, height, width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            size_divisor=self.size_divisor,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
92
93
94

@require_torch
@require_vision
95
class GLPNImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
96
    image_processing_class = GLPNImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
97
98

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
99
        super().setUp()
100
        self.image_processor_tester = GLPNImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
101
102

    @property
103
104
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
105

106
107
108
109
110
111
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
NielsRogge's avatar
NielsRogge committed
112
113

    def test_call_pil(self):
114
115
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
116
        # create random PIL images
117
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
118
119
120
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

121
122
        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
123
124
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
125
126

    def test_call_numpy(self):
127
128
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
129
        # create random numpy tensors
130
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
131
132
133
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

134
135
        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
136
137
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
138
139

    def test_call_pytorch(self):
140
141
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
142
        # create random PyTorch tensors
143
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
144
145
146
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

147
148
        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
149
150
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
amyeroberts's avatar
amyeroberts committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processing_class.num_channels = 4
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
        self.image_processing_class.num_channels = 3