configuration_xxx.py 4.27 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# coding=utf-8
# Copyright 2010, XXX authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XXX model configuration """

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import sys
import six
from io import open

from .configuration_utils import PretrainedConfig

logger = logging.getLogger(__name__)

XXX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
30
31
    "xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-config.json",
    "xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-config.json",
thomwolf's avatar
thomwolf committed
32
33
34
35
36
37
38
39
40
41
}


class XxxConfig(PretrainedConfig):
    r"""
        :class:`~transformers.XxxConfig` is the configuration class to store the configuration of a
        `XxxModel`.


        Arguments:
thomwolf's avatar
thomwolf committed
42
            vocab_size: Vocabulary size of `inputs_ids` in `XxxModel`.
thomwolf's avatar
thomwolf committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `XxxModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
    """
    pretrained_config_archive_map = XXX_PRETRAINED_CONFIG_ARCHIVE_MAP

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def __init__(
        self,
        vocab_size=50257,
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        summary_type="cls_index",
        summary_use_proj=True,
        summary_activation=None,
        summary_proj_to_labels=True,
        summary_first_dropout=0.1,
        **kwargs
    ):
thomwolf's avatar
thomwolf committed
86
        super(XxxConfig, self).__init__(**kwargs)
87
        self.vocab_size = vocab_size
thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self.n_ctx = n_ctx
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.summary_type = summary_type
        self.summary_use_proj = summary_use_proj
        self.summary_activation = summary_activation
        self.summary_first_dropout = summary_first_dropout
        self.summary_proj_to_labels = summary_proj_to_labels

    @property
    def max_position_embeddings(self):
        return self.n_positions

    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer