"tests/test_modeling_tf_albert.py" did not exist on "b67fa1a8d2302d808ecb9d95355181eaf21ee3b6"
run_bertology.py 18.3 KB
Newer Older
1
#!/usr/bin/env python3
thomwolf's avatar
thomwolf committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 CMU and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bertology: this script shows how you can explore the internals of the models in the library to:
    - compute the entropy of the head attentions
    - compute the importance of each head
    - prune (remove) the low importance head.
    Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
    which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
"""
thomwolf's avatar
thomwolf committed
22
import os
23
24
import argparse
import logging
thomwolf's avatar
thomwolf committed
25
from datetime import timedelta, datetime
thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm
27
28
29

import numpy as np

thomwolf's avatar
thomwolf committed
30
31
32
33
34
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss

35
36
37
38
39
40
41
42
43
44
45
46
from transformers import (
    WEIGHTS_NAME,
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
)
47

thomwolf's avatar
thomwolf committed
48
from run_glue import set_seed, load_and_cache_examples, ALL_MODELS, MODEL_CLASSES
thomwolf's avatar
thomwolf committed
49

Adrian Bauer's avatar
Adrian Bauer committed
50
51
52
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
thomwolf's avatar
thomwolf committed
53

54
55
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
56
57

def entropy(p):
thomwolf's avatar
thomwolf committed
58
    """ Compute the entropy of a probability distribution """
thomwolf's avatar
thomwolf committed
59
60
61
62
    plogp = p * torch.log(p)
    plogp[p == 0] = 0
    return -plogp.sum(dim=-1)

thomwolf's avatar
thomwolf committed
63

thomwolf's avatar
thomwolf committed
64
def print_2d_tensor(tensor):
thomwolf's avatar
thomwolf committed
65
    """ Print a 2D tensor """
thomwolf's avatar
thomwolf committed
66
67
    logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
    for row in range(len(tensor)):
thomwolf's avatar
thomwolf committed
68
69
70
71
        if tensor.dtype != torch.long:
            logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
        else:
            logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
thomwolf's avatar
thomwolf committed
72

thomwolf's avatar
thomwolf committed
73

74
75
76
def compute_heads_importance(
    args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None
):
thomwolf's avatar
thomwolf committed
77
78
    """ This method shows how to compute:
        - head attention entropy
thomwolf's avatar
thomwolf committed
79
80
        - head importance scores according to http://arxiv.org/abs/1905.10650
    """
thomwolf's avatar
thomwolf committed
81
82
83
84
    # Prepare our tensors
    n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
    head_importance = torch.zeros(n_layers, n_heads).to(args.device)
    attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
thomwolf's avatar
thomwolf committed
85
86
87
88

    if head_mask is None:
        head_mask = torch.ones(n_layers, n_heads).to(args.device)
    head_mask.requires_grad_(requires_grad=True)
thomwolf's avatar
thomwolf committed
89
90
91
92
    preds = None
    labels = None
    tot_tokens = 0.0

thomwolf's avatar
thomwolf committed
93
94
95
96
    for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
        batch = tuple(t.to(args.device) for t in batch)
        input_ids, input_mask, segment_ids, label_ids = batch

thomwolf's avatar
thomwolf committed
97
        # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
98
99
100
101
102
103
104
105
        outputs = model(
            input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask
        )
        loss, logits, all_attentions = (
            outputs[0],
            outputs[1],
            outputs[-1],
        )  # Loss and logits are the first, attention the last
thomwolf's avatar
thomwolf committed
106
        loss.backward()  # Backpropagate to populate the gradients in the head mask
thomwolf's avatar
thomwolf committed
107
108
109
110
111
112
113

        if compute_entropy:
            for layer, attn in enumerate(all_attentions):
                masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
                attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()

        if compute_importance:
thomwolf's avatar
thomwolf committed
114
            head_importance += head_mask.grad.abs().detach()
thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122

        # Also store our logits/labels if we want to compute metrics afterwards
        if preds is None:
            preds = logits.detach().cpu().numpy()
            labels = label_ids.detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128

        tot_tokens += input_mask.float().detach().sum().data

    # Normalize
    attn_entropy /= tot_tokens
    head_importance /= tot_tokens
thomwolf's avatar
thomwolf committed
129
130
131
    # Layerwise importance normalization
    if not args.dont_normalize_importance_by_layer:
        exponent = 2
132
        norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent)
thomwolf's avatar
thomwolf committed
133
134
135
        head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20

    if not args.dont_normalize_global_importance:
thomwolf's avatar
thomwolf committed
136
137
        head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())

thomwolf's avatar
thomwolf committed
138
    # Print/save matrices
139
140
    np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy())
    np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy())
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147

    logger.info("Attention entropies")
    print_2d_tensor(attn_entropy)
    logger.info("Head importance scores")
    print_2d_tensor(head_importance)
    logger.info("Head ranked by importance scores")
    head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
148
149
150
    head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(
        head_importance.numel(), device=args.device
    )
thomwolf's avatar
thomwolf committed
151
152
153
    head_ranks = head_ranks.view_as(head_importance)
    print_2d_tensor(head_ranks)

thomwolf's avatar
thomwolf committed
154
    return attn_entropy, head_importance, preds, labels
thomwolf's avatar
thomwolf committed
155

thomwolf's avatar
thomwolf committed
156

thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def mask_heads(args, model, eval_dataloader):
    """ This method shows how to mask head (set some heads to zero), to test the effect on the network,
        based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
    """
    _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
    logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)

    new_head_mask = torch.ones_like(head_importance)
    num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))

    current_score = original_score
    while current_score >= original_score * args.masking_threshold:
171
        head_mask = new_head_mask.clone()  # save current head mask
thomwolf's avatar
thomwolf committed
172
        # heads from least important to most - keep only not-masked heads
173
        head_importance[head_mask == 0.0] = float("Inf")
thomwolf's avatar
thomwolf committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        current_heads_to_mask = head_importance.view(-1).sort()[1]

        if len(current_heads_to_mask) <= num_to_mask:
            break

        # mask heads
        current_heads_to_mask = current_heads_to_mask[:num_to_mask]
        logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
        new_head_mask = new_head_mask.view(-1)
        new_head_mask[current_heads_to_mask] = 0.0
        new_head_mask = new_head_mask.view_as(head_mask)
        print_2d_tensor(new_head_mask)

        # Compute metric and head importance again
188
189
190
        _, head_importance, preds, labels = compute_heads_importance(
            args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
        )
thomwolf's avatar
thomwolf committed
191
192
        preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
        current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
193
194
195
196
197
198
        logger.info(
            "Masking: current score: %f, remaning heads %d (%.1f percents)",
            current_score,
            new_head_mask.sum(),
            new_head_mask.sum() / new_head_mask.numel() * 100,
        )
thomwolf's avatar
thomwolf committed
199
200
201

    logger.info("Final head mask")
    print_2d_tensor(head_mask)
202
    np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy())
thomwolf's avatar
thomwolf committed
203
204
205
206
207
208
209
210
211
212
213

    return head_mask


def prune_heads(args, model, eval_dataloader, head_mask):
    """ This method shows how to prune head (remove heads weights) based on
        the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
    """
    # Try pruning and test time speedup
    # Pruning is like masking but we actually remove the masked weights
    before_time = datetime.now()
214
215
216
    _, _, preds, labels = compute_heads_importance(
        args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
    )
thomwolf's avatar
thomwolf committed
217
218
219
220
221
222
223
224
225
226
227
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name]
    original_time = datetime.now() - before_time

    original_num_params = sum(p.numel() for p in model.parameters())
    heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
    assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
    model.prune_heads(heads_to_prune)
    pruned_num_params = sum(p.numel() for p in model.parameters())

    before_time = datetime.now()
228
229
230
    _, _, preds, labels = compute_heads_importance(
        args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None
    )
thomwolf's avatar
thomwolf committed
231
232
233
234
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name]
    new_time = datetime.now() - before_time

235
236
237
238
239
240
    logger.info(
        "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)",
        original_num_params,
        pruned_num_params,
        pruned_num_params / original_num_params * 100,
    )
thomwolf's avatar
thomwolf committed
241
    logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
242
    logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100)
thomwolf's avatar
thomwolf committed
243
244
245


def main():
246
    parser = argparse.ArgumentParser()
tuvuumass's avatar
tuvuumass committed
247
    ## Required parameters
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
thomwolf's avatar
thomwolf committed
276
277

    ## Other parameters
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name_or_path",
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name_or_path",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances."
    )
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )

    parser.add_argument(
        "--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers"
    )
    parser.add_argument(
        "--dont_normalize_global_importance",
        action="store_true",
        help="Don't normalize all importance scores between 0 and 1",
    )

    parser.add_argument(
        "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy."
    )
    parser.add_argument(
        "--masking_threshold",
        default=0.9,
        type=float,
        help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).",
    )
    parser.add_argument(
        "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step."
    )
    parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")

    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, sequences shorter padded.",
    )
thomwolf's avatar
thomwolf committed
336
337
    parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")

338
    parser.add_argument("--seed", type=int, default=42)
thomwolf's avatar
thomwolf committed
339
    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
340
341
342
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
343
344
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
345
346
347
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
348

thomwolf's avatar
thomwolf committed
349
350
351
352
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
353
    # Setup devices and distributed training
thomwolf's avatar
thomwolf committed
354
355
    if args.local_rank == -1 or args.no_cuda:
        args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
356
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
357
358
359
    else:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
thomwolf's avatar
thomwolf committed
360
        args.n_gpu = 1
361
        torch.distributed.init_process_group(backend="nccl")  # Initializes the distributed backend
thomwolf's avatar
thomwolf committed
362

thomwolf's avatar
thomwolf committed
363
    # Setup logging
364
    logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
365
    logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
366

thomwolf's avatar
thomwolf committed
367
    # Set seeds
thomwolf's avatar
thomwolf committed
368
    set_seed(args)
thomwolf's avatar
thomwolf committed
369
370

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
371
372
373
374
375
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
376
    label_list = processor.get_labels()
thomwolf's avatar
thomwolf committed
377
    num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
378

thomwolf's avatar
thomwolf committed
379
    # Load pretrained model and tokenizer
thomwolf's avatar
thomwolf committed
380
    if args.local_rank not in [-1, 0]:
thomwolf's avatar
thomwolf committed
381
382
383
384
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = ""
    for key in MODEL_CLASSES:
tuvuumass's avatar
tuvuumass committed
385
        if key in args.model_name_or_path.lower():
thomwolf's avatar
thomwolf committed
386
387
388
            args.model_type = key  # take the first match in model types
            break
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        output_attentions=True,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
thomwolf's avatar
thomwolf committed
406

thomwolf's avatar
thomwolf committed
407
    if args.local_rank == 0:
thomwolf's avatar
thomwolf committed
408
409
410
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    # Distributed and parallel training
thomwolf's avatar
thomwolf committed
411
    model.to(args.device)
thomwolf's avatar
thomwolf committed
412
    if args.local_rank != -1:
413
414
415
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
416
417
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
418

thomwolf's avatar
thomwolf committed
419
    # Print/save training arguments
420
    torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
thomwolf's avatar
thomwolf committed
421
    logger.info("Training/evaluation parameters %s", args)
thomwolf's avatar
thomwolf committed
422

thomwolf's avatar
thomwolf committed
423
424
    # Prepare dataset for the GLUE task
    eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
thomwolf's avatar
thomwolf committed
425
    if args.data_subset > 0:
thomwolf's avatar
thomwolf committed
426
        eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
thomwolf's avatar
thomwolf committed
427
428
429
430
    eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)

    # Compute head entropy and importance score
thomwolf's avatar
thomwolf committed
431
    compute_heads_importance(args, model, eval_dataloader)
thomwolf's avatar
thomwolf committed
432

thomwolf's avatar
thomwolf committed
433
434
    # Try head masking (set heads to zero until the score goes under a threshole)
    # and head pruning (remove masked heads and see the effect on the network)
thomwolf's avatar
thomwolf committed
435
    if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
thomwolf's avatar
thomwolf committed
436
437
        head_mask = mask_heads(args, model, eval_dataloader)
        prune_heads(args, model, eval_dataloader, head_mask)
thomwolf's avatar
thomwolf committed
438

thomwolf's avatar
thomwolf committed
439

440
if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
441
    main()