train.py 12.7 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
VictorSanh's avatar
VictorSanh committed
16
17
Training the distilled model.
Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2.
VictorSanh's avatar
VictorSanh committed
18
"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22
23
24
25
26
import os
import argparse
import pickle
import json
import shutil
import numpy as np
import torch

VictorSanh's avatar
VictorSanh committed
27
28
29
30
from transformers import BertConfig, BertForMaskedLM, BertTokenizer
from transformers import RobertaConfig, RobertaForMaskedLM, RobertaTokenizer
from transformers import DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer
from transformers import GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
VictorSanh's avatar
VictorSanh committed
31
32
33

from distiller import Distiller
from utils import git_log, logger, init_gpu_params, set_seed
VictorSanh's avatar
VictorSanh committed
34
35
36
37
from lm_seqs_dataset import LmSeqsDataset


MODEL_CLASSES = {
38
39
40
41
    "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    "bert": (BertConfig, BertForMaskedLM, BertTokenizer),
    "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
VictorSanh's avatar
VictorSanh committed
42
43
}

44

VictorSanh's avatar
VictorSanh committed
45
46
47
48
def sanity_checks(args):
    """
    A bunch of args sanity checks to perform even starting...
    """
49
50
    assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
    assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
VictorSanh's avatar
VictorSanh committed
51
52
    if args.mlm:
        assert os.path.isfile(args.token_counts)
53
        assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
VictorSanh's avatar
VictorSanh committed
54
    else:
55
        assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
VictorSanh's avatar
VictorSanh committed
56

57
58
59
    assert args.teacher_type == args.student_type or (
        args.student_type == "distilbert" and args.teacher_type == "bert"
    )
VictorSanh's avatar
VictorSanh committed
60
61
62
63
    assert os.path.isfile(args.student_config)
    if args.student_pretrained_weights is not None:
        assert os.path.isfile(args.student_pretrained_weights)

64
65
66
67
68
69
70
71
72
    if args.freeze_token_type_embds:
        assert args.student_type in ["roberta"]

    assert args.alpha_ce >= 0.0
    assert args.alpha_mlm >= 0.0
    assert args.alpha_clm >= 0.0
    assert args.alpha_mse >= 0.0
    assert args.alpha_cos >= 0.0
    assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
VictorSanh's avatar
VictorSanh committed
73
74
75


def freeze_pos_embeddings(student, args):
76
    if args.student_type == "roberta":
VictorSanh's avatar
VictorSanh committed
77
        student.roberta.embeddings.position_embeddings.weight.requires_grad = False
78
    elif args.student_type == "gpt2":
VictorSanh's avatar
VictorSanh committed
79
        student.transformer.wpe.weight.requires_grad = False
VictorSanh's avatar
VictorSanh committed
80

81

VictorSanh's avatar
VictorSanh committed
82
def freeze_token_type_embeddings(student, args):
83
    if args.student_type == "roberta":
VictorSanh's avatar
VictorSanh committed
84
        student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False
VictorSanh's avatar
VictorSanh committed
85

86

VictorSanh's avatar
VictorSanh committed
87
88
def main():
    parser = argparse.ArgumentParser(description="Training")
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.")

    parser.add_argument(
        "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)"
    )
    parser.add_argument(
        "--data_file",
        type=str,
        required=True,
        help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.",
    )

    parser.add_argument(
        "--student_type",
        type=str,
        choices=["distilbert", "roberta", "gpt2"],
        required=True,
        help="The student type (DistilBERT, RoBERTa).",
    )
    parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.")
    parser.add_argument(
        "--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint."
    )

    parser.add_argument(
        "--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)."
    )
    parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.")

    parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.")
    parser.add_argument(
        "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0."
    )
    parser.add_argument(
        "--alpha_mlm",
        default=0.0,
        type=float,
        help="Linear weight for the MLM loss. Must be >=0. Should be used in coonjunction with `mlm` flag.",
    )
    parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.")
    parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.")
    parser.add_argument(
        "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0."
    )

    parser.add_argument(
        "--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM."
    )
    parser.add_argument(
        "--mlm_mask_prop",
        default=0.15,
        type=float,
        help="Proportion of tokens for which we need to make a prediction.",
    )
    parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.")
    parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.")
    parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.")
    parser.add_argument(
        "--mlm_smoothing",
        default=0.7,
        type=float,
        help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).",
    )
    parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.")

    parser.add_argument(
        "--restrict_ce_to_mask",
        action="store_true",
        help="If true, compute the distilation loss only the [MLM] prediction distribution.",
    )
    parser.add_argument(
        "--freeze_pos_embs",
        action="store_true",
        help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.",
    )
    parser.add_argument(
        "--freeze_token_type_embds",
        action="store_true",
        help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.",
    )

    parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.")
    parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).")
    parser.add_argument(
        "--group_by_size",
        action="store_false",
        help="If true, group sequences that have similar length into the same batch. Default is true.",
    )

    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=50,
        help="Gradient accumulation for larger training batches.",
    )
    parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.")
    parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.")
    parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank")
    parser.add_argument("--seed", type=int, default=56, help="Random seed")

    parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.")
    parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.")
VictorSanh's avatar
VictorSanh committed
209
    args = parser.parse_args()
VictorSanh's avatar
VictorSanh committed
210
    sanity_checks(args)
VictorSanh's avatar
VictorSanh committed
211
212
213
214
215
216
217

    ## ARGS ##
    init_gpu_params(args)
    set_seed(args)
    if args.is_master:
        if os.path.exists(args.dump_path):
            if not args.force:
218
219
220
221
                raise ValueError(
                    f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it"
                    "Use `--force` if you want to overwrite it"
                )
VictorSanh's avatar
VictorSanh committed
222
223
224
225
226
            else:
                shutil.rmtree(args.dump_path)

        if not os.path.exists(args.dump_path):
            os.makedirs(args.dump_path)
227
        logger.info(f"Experiment will be dumped and logged in {args.dump_path}")
VictorSanh's avatar
VictorSanh committed
228
229

        ### SAVE PARAMS ###
230
231
        logger.info(f"Param: {args}")
        with open(os.path.join(args.dump_path, "parameters.json"), "w") as f:
VictorSanh's avatar
VictorSanh committed
232
233
234
            json.dump(vars(args), f, indent=4)
        git_log(args.dump_path)

VictorSanh's avatar
VictorSanh committed
235
236
    student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type]
    teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type]
VictorSanh's avatar
VictorSanh committed
237
238

    ### TOKENIZER ###
VictorSanh's avatar
VictorSanh committed
239
    tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name)
VictorSanh's avatar
VictorSanh committed
240
    special_tok_ids = {}
241
242
243
    for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
        idx = tokenizer.all_special_tokens.index(tok_symbol)
        special_tok_ids[tok_name] = tokenizer.all_special_ids[idx]
244
    logger.info(f"Special tokens {special_tok_ids}")
VictorSanh's avatar
VictorSanh committed
245
    args.special_tok_ids = special_tok_ids
VictorSanh's avatar
VictorSanh committed
246
    args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name]
VictorSanh's avatar
VictorSanh committed
247
248

    ## DATA LOADER ##
249
250
    logger.info(f"Loading data from {args.data_file}")
    with open(args.data_file, "rb") as fp:
VictorSanh's avatar
VictorSanh committed
251
252
        data = pickle.load(fp)

VictorSanh's avatar
VictorSanh committed
253
    if args.mlm:
254
255
        logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)")
        with open(args.token_counts, "rb") as fp:
VictorSanh's avatar
VictorSanh committed
256
            counts = pickle.load(fp)
257

VictorSanh's avatar
VictorSanh committed
258
259
        token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing
        for idx in special_tok_ids.values():
260
            token_probs[idx] = 0.0  # do not predict special tokens
VictorSanh's avatar
VictorSanh committed
261
262
263
        token_probs = torch.from_numpy(token_probs)
    else:
        token_probs = None
VictorSanh's avatar
VictorSanh committed
264

VictorSanh's avatar
VictorSanh committed
265
    train_lm_seq_dataset = LmSeqsDataset(params=args, data=data)
266
    logger.info(f"Data loader created.")
VictorSanh's avatar
VictorSanh committed
267
268

    ## STUDENT ##
269
    logger.info(f"Loading student config from {args.student_config}")
VictorSanh's avatar
VictorSanh committed
270
271
272
273
    stu_architecture_config = student_config_class.from_pretrained(args.student_config)
    stu_architecture_config.output_hidden_states = True

    if args.student_pretrained_weights is not None:
274
275
        logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}")
        student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config)
VictorSanh's avatar
VictorSanh committed
276
    else:
VictorSanh's avatar
VictorSanh committed
277
        student = student_model_class(stu_architecture_config)
VictorSanh's avatar
VictorSanh committed
278
279

    if args.n_gpu > 0:
280
281
        student.to(f"cuda:{args.local_rank}")
    logger.info(f"Student loaded.")
VictorSanh's avatar
VictorSanh committed
282
283

    ## TEACHER ##
VictorSanh's avatar
VictorSanh committed
284
    teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True)
VictorSanh's avatar
VictorSanh committed
285
    if args.n_gpu > 0:
286
287
        teacher.to(f"cuda:{args.local_rank}")
    logger.info(f"Teacher loaded from {args.teacher_name}.")
VictorSanh's avatar
VictorSanh committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    ## FREEZING ##
    if args.freeze_pos_embs:
        freeze_pos_embeddings(student, args)
    if args.freeze_token_type_embds:
        freeze_token_type_embeddings(student, args)

    ## SANITY CHECKS ##
    assert student.config.vocab_size == teacher.config.vocab_size
    assert student.config.hidden_size == teacher.config.hidden_size
    assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
    if args.mlm:
        assert token_probs.size(0) == stu_architecture_config.vocab_size

VictorSanh's avatar
VictorSanh committed
302
303
    ## DISTILLER ##
    torch.cuda.empty_cache()
304
305
306
    distiller = Distiller(
        params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher
    )
VictorSanh's avatar
VictorSanh committed
307
308
309
310
311
312
    distiller.train()
    logger.info("Let's go get some drinks.")


if __name__ == "__main__":
    main()