"vscode:/vscode.git/clone" did not exist on "bf19a7a19e3306d63b9393f81697bd06c9efef88"
test_tokenization_xlm_roberta.py 8.69 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import itertools
18
import os
19
import pickle
20
21
import unittest

22
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
23
from transformers.file_utils import cached_property
24
from transformers.testing_utils import require_sentencepiece, require_tokenizers, slow
25

26
from .test_tokenization_common import TokenizerTesterMixin
27
28


29
30
31
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


32
33
@require_sentencepiece
@require_tokenizers
34
35
36
class XLMRobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = XLMRobertaTokenizer
37
38
    rust_tokenizer_class = XLMRobertaTokenizerFast
    test_rust_tokenizer = True
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
                #                                       ^ unk: 2 + 1 = 3                  unk: 2 + 1 = 3 ^
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def test_subword_regularization_tokenizer(self):
        # Subword regularization is only available for the slow tokenizer.
        tokenizer = XLMRobertaTokenizer(
            SAMPLE_VOCAB, keep_accents=True, sp_model_kwargs={"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        )

        # Subword regularization augments training data with subword sampling.
        # This has a random component. We test if the tokenizer generates different
        # results when subword regularization is enabled.
        tokens_list = []
        for _ in range(5):
            tokens_list.append(tokenizer.tokenize("This is a test for subword regularization."))

        # the list of different pairs of tokens_list
        combinations = itertools.combinations(tokens_list, 2)

        all_equal = True
        for combination in combinations:
            if combination[0] != combination[1]:
                all_equal = False

        self.assertFalse(all_equal)

146
147
148
149
150
151
152
153
154
155
156
157
    def test_pickle_subword_regularization_tokenizer(self):
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB, keep_accents=True, sp_model_kwargs=sp_model_kwargs)
        tokenizer_bin = pickle.dumps(tokenizer)
        tokenizer_new = pickle.loads(tokenizer_bin)

        self.assertIsNotNone(tokenizer_new.sp_model_kwargs)
        self.assertTrue(isinstance(tokenizer_new.sp_model_kwargs, dict))
        self.assertEqual(tokenizer_new.sp_model_kwargs, sp_model_kwargs)

158
159
160
161
    @cached_property
    def big_tokenizer(self):
        return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is fals茅."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

184
185
186
187
188
189
190
191
    @slow
    def test_tokenization_base_easy_symbols(self):
        symbols = "Hello World!"
        original_tokenizer_encodings = [0, 35378, 6661, 38, 2]
        # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')  # xlmr.large has same tokenizer
        # xlmr.eval()
        # xlmr.encode(symbols)

192
        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    @slow
    def test_tokenization_base_hard_symbols(self):
        symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
        original_tokenizer_encodings = [
            0,
            3293,
            83,
            10,
            4552,
            4989,
            7986,
            678,
            10,
            5915,
            111,
            179459,
            124850,
            4,
            6044,
            237,
            12,
            6,
            5,
            6,
            4,
            6780,
            705,
            15,
            1388,
            44,
            378,
            10114,
            711,
            152,
            20,
            6,
            5,
            22376,
            642,
            1221,
            15190,
            34153,
            450,
            5608,
            959,
            1119,
            57702,
            136,
            186,
            47,
            1098,
            29367,
            47,
247
248
249
250
251
            # 4426, # What fairseq tokenizes from "<unk>": "_<"
            # 3678, # What fairseq tokenizes from "<unk>": "unk"
            # 2740, # What fairseq tokenizes from "<unk>": ">"
            3,  # What we tokenize from "<unk>": "<unk>"
            6,  # Residue from the tokenization: an extra sentencepiece underline
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
            4,
            6044,
            237,
            6284,
            50901,
            528,
            31,
            90,
            34,
            927,
            2,
        ]
        # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')  # xlmr.large has same tokenizer
        # xlmr.eval()
        # xlmr.encode(symbols)

268
        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))