test_modeling_tf_mbart.py 10.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

16
17
18
19
import tempfile
import unittest

from transformers import AutoTokenizer, MBartConfig, is_tf_available
20
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow, tooslow
21
from transformers.utils import cached_property
22

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
25
from ...test_pipeline_mixin import PipelineTesterMixin
26
27


28
if is_tf_available():
29
30
    import tensorflow as tf

31
    from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration, TFMBartModel
32
33


34
35
@require_tf
class TFMBartModelTester:
36
    config_cls = MBartConfig
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
103

104
105
106
    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFMBartModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]
107

108
109
        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
110
        head_mask = inputs_dict["head_mask"]
111
        self.batch_size = 1
112

113
        # first forward pass
114
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
115

116
117
        output, past_key_values = outputs.to_tuple()
        past_key_values = past_key_values[1]
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
        model_class = self.all_generative_model_classes[0]
        input_ids = {
            "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
            "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
        }
        # Prepare our model
        model = model_class(config)
        model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
        # Let's load it from the disk to be sure we can use pretrained weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            model = model_class.from_pretrained(tmpdirname)
        outputs_dict = model(input_ids)
        hidden_states = outputs_dict[0]
        # Add a dense layer on top to test integration with other keras modules
        outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
        # Compile extended model
        extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
        extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

145
146
147
148
149
150
151

def prepare_mbart_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
152
153
    head_mask=None,
    decoder_head_mask=None,
154
    cross_attn_head_mask=None,
155
156
157
158
159
160
161
162
163
164
165
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
166
167
168
169
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
170
171
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
172
173
174
175
176
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
177
        "head_mask": head_mask,
178
179
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
180
181
182
183
    }


@require_tf
184
class TFMBartModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
185
186
    all_model_classes = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
    all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
187
188
189
190
191
192
    pipeline_model_mapping = (
        {
            "conversational": TFMBartForConditionalGeneration,
            "feature-extraction": TFMBartModel,
            "summarization": TFMBartForConditionalGeneration,
            "text2text-generation": TFMBartForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
193
            "translation": TFMBartForConditionalGeneration,
194
195
196
197
        }
        if is_tf_available()
        else {}
    )
198
199
    is_encoder_decoder = True
    test_pruning = False
200
    test_onnx = False
201

202
203
204
205
206
207
208
209
210
211
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
            # Exception encountered when calling layer '...'
            return True

        return False

212
213
214
215
216
217
218
219
220
221
222
    def setUp(self):
        self.model_tester = TFMBartModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)

223
224
225
226
227
228
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
229
230
231
232
233
234
235
236
237
238
239
240
241

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
242

243
    @tooslow
244
245
246
    def test_saved_model_creation(self):
        pass

247
248
249

@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
250
@require_tf
251
class TFMBartModelIntegrationTest(unittest.TestCase):
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
    ]
    expected_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
    ]
    model_name = "facebook/mbart-large-en-ro"

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)

    @cached_property
    def model(self):
266
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
267
268
269
270
271
272
273
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
274
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="tf")
275
276
277
278
279
280
281
282
283
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words

    @slow
    def test_batch_generation_en_ro(self):
        self._assert_generated_batch_equal_expected()