"test/vscode:/vscode.git/clone" did not exist on "28c79dc84ab8d6f2a35dd00a543f7961e90c39c9"
test_modeling_longformer.py 15.5 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import require_torch, slow, torch_device


if is_torch_available():
    import torch
    from transformers import (
        LongformerConfig,
        LongformerModel,
        LongformerForMaskedLM,
32
        LongformerForSequenceClassification,
33
        LongformerForTokenClassification,
34
        LongformerForQuestionAnswering,
35
        LongformerForMultipleChoice,
Iz Beltagy's avatar
Iz Beltagy committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    )


class LongformerModelTester(object):
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
        attention_window=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.attention_window = attention_window

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
        self.key_length = self.attention_window + 1

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_longformer_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

    def create_and_check_longformer_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(
167
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
Iz Beltagy's avatar
Iz Beltagy committed
168
169
170
171
172
173
174
175
176
177
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.check_loss_output(result)

178
179
180
181
182
183
184
185
186
    def create_and_check_longformer_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        loss, start_logits, end_logits = model(
            input_ids,
            attention_mask=input_mask,
187
            global_attention_mask=input_mask,
188
189
190
191
192
193
194
195
196
197
198
199
200
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        result = {
            "loss": loss,
            "start_logits": start_logits,
            "end_logits": end_logits,
        }
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    def create_and_check_longformer_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        loss, logits = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
        )
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
        self.check_loss_output(result)

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    def create_and_check_longformer_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

233
234
235
236
237
238
239
240
241
242
    def create_and_check_longformer_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = LongformerForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
243
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
244
245
246
        loss, logits = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
247
            global_attention_mask=multiple_choice_input_mask,
248
249
250
251
252
253
254
255
256
257
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

Iz Beltagy's avatar
Iz Beltagy committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
        # Make sure there are exactly three sep_token_id
        input_ids[:, -3:] = config.sep_token_id
        input_mask = torch.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

Iz Beltagy's avatar
Iz Beltagy committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_headmasking = False  # head masking is not supported
    test_torchscript = False

    all_model_classes = (LongformerForMaskedLM, LongformerModel) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_longformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model(*config_and_inputs)

    def test_longformer_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)

316
317
318
319
    def test_longformer_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
        self.model_tester.create_and_check_longformer_for_question_answering(*config_and_inputs)

320
321
322
323
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_sequence_classification(*config_and_inputs)

324
325
326
327
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_token_classification(*config_and_inputs)

328
329
330
331
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_multiple_choice(*config_and_inputs)

Iz Beltagy's avatar
Iz Beltagy committed
332
333
334
335

class LongformerModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
336
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
337
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
338
339

        # 'Hello world! ' repeated 1000 times
340
341
342
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
343
344
345
346
347
348

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
        attention_mask[:, [1, 4, 21]] = 2  # Set global attention on a few random positions

        output = model(input_ids, attention_mask=attention_mask)[0]

349
350
        expected_output_sum = torch.tensor(74585.8594, device=torch_device)
        expected_output_mean = torch.tensor(0.0243, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
351
352
353
354
355
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
    def test_inference_masked_lm(self):
356
        model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
357
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
358
359

        # 'Hello world! ' repeated 1000 times
360
361
362
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
363

364
        loss, prediction_scores = model(input_ids, labels=input_ids)
Iz Beltagy's avatar
Iz Beltagy committed
365

366
367
368
369
        expected_loss = torch.tensor(0.0620, device=torch_device)
        expected_prediction_scores_sum = torch.tensor(-6.1599e08, device=torch_device)
        expected_prediction_scores_mean = torch.tensor(-3.0622, device=torch_device)
        input_ids = input_ids.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
370
371
372
373

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))