distillation.py 12.6 KB
Newer Older
1
2
#!/usr/bin/env python

3
4
5
import argparse
import gc
import os
6
import sys
7
8
9
10
11
12
13
14
from pathlib import Path
from typing import List

import pytorch_lightning as pl
import torch
from torch import nn
from torch.nn import functional as F

15
16
from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main
17
18
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration
19
from transformers.modeling_bart import shift_tokens_right
20
from utils import calculate_bleu, freeze_params, label_smoothed_nll_loss, use_task_specific_params
21
22


23
24
25
26
27
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import generic_train  # noqa


28
class BartSummarizationDistiller(SummarizationModule):
29
30
    """Supports Bart, Pegasus and other models that inherit from Bart."""

31
    loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"]
32
33
34

    def __init__(self, hparams):
        assert Path(hparams.data_dir).exists()
35
36
37
38
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)

        save_dir = self.output_dir.joinpath("student")
39

40
41
42
43
44
45
46
47
48
        hparams.model_name_or_path = str(save_dir)  # Tell lightning we are training the student
        teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
        use_task_specific_params(teacher, hparams.task)  # We copy good generation parameters to student by default
        student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers(
            teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir
        )
        if hparams.length_penalty != -1:
            student.config.length_penalty = hparams.length_penalty
        super().__init__(hparams, model=student, config=student.config)
49
        model_type = student.config.model_type
50
        self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids  # type: List[int], List[int]
51
52
53
54
55
56
57
58
59
60
61

        if model_type == "t5":
            teacher_encoder_layers = len(teacher.get_encoder().block)
            teacher_decoder_layers = len(teacher.get_decoder().block)
        else:
            teacher_encoder_layers = teacher.config.encoder_layers
            teacher_decoder_layers = teacher.config.decoder_layers

        self.different_encoder = hparams.student_encoder_layers != teacher_encoder_layers
        self.different_decoder = hparams.student_decoder_layers != teacher_decoder_layers

62
63
        self.teacher = teacher
        freeze_params(self.teacher)
64
65
66
67
68
69
70
71

        if not self.different_encoder:  # To save RAM, delete teacher encoder and freeze student encoder.
            try:
                del self.teacher.model.encoder
            except AttributeError:  # T5
                del self.teacher.encoder
        # Intermediate supervision: Decide which layers to supervise
        if hparams.supervise_forward:
72
73
74
75
            self.e_matches = get_layers_to_supervise(n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers)
            self.d_matches = get_layers_to_supervise(n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers)
        else:  # student layer should emulate hidden states of the teacher layer it was copied from
            self.e_matches = self.e_layer_ids
76
            self.d_matches = self.d_layer_ids
77

78
79
80
81
82
83
84
85
86
        self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
        self.temperature = 2.0
        self.alpha_mlm = hparams.alpha_mlm
        self.alpha_ce = hparams.alpha_ce
        self.alpha_hid = hparams.alpha_hid
        gc.collect()
        torch.cuda.empty_cache()

    def calc_mse_loss(self, teacher_outputs: torch.Tensor, student_outputs: torch.Tensor, mask) -> torch.FloatTensor:
87
88
        """Supervise MSE(teacher.encoder_outputs, student.encoder_outputs)."""
        # raise NotImplementedError()
89
90
91
92
93
94
95
96
97
98
99
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(student_outputs).bool()
            s_logits_slct = torch.masked_select(student_outputs, sel_mask)
            t_logits_slct = torch.masked_select(teacher_outputs, sel_mask)
        else:
            t_logits_slct = teacher_outputs
            s_logits_slct = student_outputs
        return F.mse_loss(s_logits_slct, t_logits_slct)

    def calc_ce_loss(self, mask, s_logits, t_logits):
100
101
102
103
104
105
106
107
108
        """Copy pasted from distillbert (transformers/examples/distillation/)"""

        # mask has False at padding_idx
        sel_mask = mask[:, :, None].expand_as(s_logits)
        vocab_size = s_logits.size(-1)
        s_logits_slct = torch.masked_select(s_logits, sel_mask)  # (bs * seq_length * voc_size) modulo the 1s in mask
        t_logits_slct = torch.masked_select(t_logits, sel_mask)  # (bs * seq_length * voc_size) modulo the 1s in mask
        s_logits_slct = s_logits_slct.view(-1, vocab_size)  # (bs * seq_length, voc_size) modulo the 1s in mask
        t_logits_slct = t_logits_slct.view(-1, vocab_size)  # (bs * seq_length, voc_size) modulo the 1s in mask
109
110
111
112
113
114
115
116
        assert t_logits_slct.size() == s_logits_slct.size()
        loss_ce = (
            self.ce_loss_fct(
                F.log_softmax(s_logits_slct / self.temperature, dim=-1),
                F.softmax(t_logits_slct / self.temperature, dim=-1),
            )
            * (self.temperature) ** 2
        )
117
        return loss_ce
118
119
120
121

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        SummarizationModule.add_model_specific_args(parser, root_dir)
122
        add_distill_args(parser)
123
124
125
        return parser

    def _step(self, batch):
126
        # assert is_frozen(self.teacher) copied_decoder_layers
127
        pad_token_id = self.tokenizer.pad_token_id
128
129
130
131
132
133
        input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
        if isinstance(self.model, T5ForConditionalGeneration):
            decoder_input_ids = self.model._shift_right(labels)
        else:
            decoder_input_ids = shift_tokens_right(labels, pad_token_id)

134
        # noinspection PyCallingNonCallable
135
        lm_logits, dec_hidden, enc_outputs, enc_hidden_state = self(
136
137
138
139
140
            input_ids,
            attention_mask=src_mask,
            decoder_input_ids=decoder_input_ids,
            output_hidden_states=True,
            output_attentions=False,
141
            use_cache=False,
142
        )
143
144
145
146
147
148

        # Same cross entropy vs. label smoothing logic as finetune.py
        assert lm_logits.shape[-1] == self.model.config.vocab_size
        if self.hparams.label_smoothing == 0:
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
            loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
149
            student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
150
151
152
        else:
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
            student_lm_loss, _ = label_smoothed_nll_loss(
153
                lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id
154
            )
155
156

        def zero_tensor():
157
            return torch.tensor(0.0).type_as(student_lm_loss)
158

159
160
        hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor()
        if self.different_encoder:  # compute encoder hidden state loss
161
            with torch.no_grad():
162
163
164
165
166
167
168
169
170
171
172
                teacher_enc_hid = self.teacher.get_encoder()(
                    input_ids, attention_mask=src_mask, output_hidden_states=True, return_dict=True
                ).hidden_states

            hid_loss_enc = self.calc_hidden_loss(
                src_mask,
                enc_hidden_state,
                teacher_enc_hid,
                self.e_matches,
                normalize_hidden=self.hparams.normalize_hidden,
            )
173
174

        with torch.no_grad():
175
            outputs = self.teacher(
176
177
                input_ids,
                attention_mask=src_mask,
178
                encoder_outputs=(enc_outputs,),
179
                decoder_input_ids=decoder_input_ids,
180
                lm_labels=labels,
181
                output_hidden_states=True,
182
                return_dict=True,
183
            )
184
            tlogits, tdec_hidden = outputs.logits, outputs.decoder_hidden_states
185
        dec_mask = decoder_input_ids.ne(pad_token_id)
186
187
188
189
190
        loss_ce = self.calc_ce_loss(dec_mask, lm_logits, tlogits)
        if self.alpha_hid > 0:  # Intermediate supervision of decoder hidden states
            hid_loss_dec = self.calc_hidden_loss(
                dec_mask, dec_hidden, tdec_hidden, self.d_matches, normalize_hidden=self.hparams.normalize_hidden
            )
191
192
193

        blended_loss = (
            self.alpha_ce * loss_ce
194
            + self.alpha_mlm * student_lm_loss
195
196
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
197
        return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec
198

199
200
201
    @staticmethod
    def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden):
        """MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT."""
202
203
204
        msg = "expected list or tuple for hidden_states, got tensor of shape: "
        assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
        assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
205
206
        mask = attention_mask.to(hidden_states[0])
        valid_count = mask.sum() * hidden_states[0].size(-1)
207
208
        student_states = torch.stack([hidden_states[i] for i in range(len(matches))])
        teacher_states = torch.stack([hidden_states_T[j] for j in matches])
209
        if normalize_hidden:
210
211
212
213
214
            student_states = F.layer_norm(student_states, student_states.shape[1:])
            teacher_states = F.layer_norm(teacher_states, teacher_states.shape[1:])
        mse = F.mse_loss(student_states, teacher_states, reduction="none")
        masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count
        return masked_mse
215
216


217
def add_distill_args(parser):
218
    parser.add_argument("--teacher", type=str)
219
220
221
222
223
224
225
    parser.add_argument("--alpha_ce", default=0.8, type=float)
    parser.add_argument("--alpha_mlm", default=0.2, type=float)
    parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
    parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
    parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
    parser.add_argument("--no_teacher", action="store_true", default=False)
    parser.add_argument("--length_penalty", type=float, default=-1)
226
227
    parser.add_argument("--supervise_forward", action="store_true", default=False)
    parser.add_argument("--normalize_hidden", action="store_true", default=False)
228
229
230


class BartTranslationDistiller(BartSummarizationDistiller):
231
232
    """Supports Mbart, Marian, other models that inherit from Bart."""

233
234
    mode = "translation"
    metric_names = ["bleu"]
235
    default_val_metric = "bleu"
236
237
238
239
240
241
242
243
244
245
246

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        assert hparams.src_lang is not None
        assert hparams.tgt_lang is not None
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]

    def calc_generative_metrics(self, preds, target) -> dict:
247
        return calculate_bleu(preds, target)
248
249
250
251
252
253
254
255

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        TranslationModule.add_model_specific_args(parser, root_dir)
        add_distill_args(parser)
        return parser


256
257
def create_module(args):
    if args.no_teacher:
258
259
260
        module_cls = TranslationModule if "translation" in args.task else SummarizationModule
    else:  # DISTILL WITH TEACHER
        module_cls = BartTranslationDistiller if "translation" in args.task else BartSummarizationDistiller
261
    args.setup_cls: str = module_cls.__name__
262
    print(f"using module {args.setup_cls}")
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    model = module_cls(args)
    return model


def distill_main(args):
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    model = create_module(args)
    return ft_main(args, model=model)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
278
    parser = pl.Trainer.add_argparse_args(parser)
279
    parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
280
281
282
    args = parser.parse_args()

    distill_main(args)