modeling_tf_bert.py 52.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 BERT model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import numpy as np
import tensorflow as tf

from .configuration_bert import BertConfig
from .modeling_tf_utils import TFPreTrainedModel
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)


TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-tf_model.h5",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-tf_model.h5",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-tf_model.h5",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-tf_model.h5",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-tf_model.h5",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-tf_model.h5",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-tf_model.h5",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-tf_model.h5",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-tf_model.h5",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-tf_model.h5",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-tf_model.h5",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-tf_model.h5",
}


54
def load_bert_pt_weights_in_tf2(tf_model, config, pytorch_checkpoint_path):
thomwolf's avatar
thomwolf committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    """ Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format
        We use HDF5 to easily do transfer learning
        (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
    """
    try:
        import re
        import torch
        import numpy
        from tensorflow.python.keras import backend as K
    except ImportError:
        logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see "
            "https://pytorch.org/ for installation instructions.")
        raise

    pt_path = os.path.abspath(pytorch_checkpoint_path)
    logger.info("Loading PyTorch weights from {}".format(pt_path))
    # Load pytorch model
    state_dict = torch.load(pt_path, map_location='cpu')

    inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
    tf_inputs = tf.constant(inputs_list)
    tfo = tf_model(tf_inputs, training=False)  # build the network

    symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
    weight_value_tuples = []
thomwolf's avatar
thomwolf committed
80
    all_pytorch_weights = set(list(state_dict.keys()))
thomwolf's avatar
thomwolf committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    for symbolic_weight in symbolic_weights:
        name = symbolic_weight.name
        name = name.replace('cls_mlm', 'cls')  # We had to split this layer in two in the TF model to be
        name = name.replace('cls_nsp', 'cls')  # able to do transfer learning (Keras only allow to remove full layers)
        name = name.replace(':0', '')
        name = name.replace('layer_', 'layer/')
        name = name.split('/')
        name = name[1:]

        transpose = bool(name[-1] == 'kernel')
        if name[-1] == 'kernel' or name[-1] == 'embeddings':
            name[-1] = 'weight'

        name = '.'.join(name)
thomwolf's avatar
thomwolf committed
95
        assert name in state_dict, "{} not found in PyTorch model".format(name)
thomwolf's avatar
thomwolf committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        array = state_dict[name].numpy()

        if transpose:
            array = numpy.transpose(array)

        try:
            assert list(symbolic_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (symbolic_weight.shape, array.shape)
            raise e

        logger.info("Initialize TF weight {}".format(symbolic_weight.name))

        weight_value_tuples.append((symbolic_weight, array))
thomwolf's avatar
thomwolf committed
110
        all_pytorch_weights.discard(name)
thomwolf's avatar
thomwolf committed
111
112
113
114

    K.batch_set_value(weight_value_tuples)

    tfo = tf_model(tf_inputs, training=False)  # Make sure restore ops are run
thomwolf's avatar
thomwolf committed
115

thomwolf's avatar
thomwolf committed
116
    logger.info("Weights or buffers not loaded from PyTorch model: {}".format(all_pytorch_weights))
thomwolf's avatar
thomwolf committed
117

thomwolf's avatar
thomwolf committed
118
119
120
121
    return tf_model


def gelu(x):
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
128
129
130
131
    """ Gaussian Error Linear Unit.
    Original Implementation of the gelu activation function in Google Bert repo when initialy created.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0)))
    return x * cdf

def gelu_new(x):
thomwolf's avatar
thomwolf committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf

def swish(x):
    return x * tf.sigmoid(x)


ACT2FN = {"gelu": tf.keras.layers.Activation(gelu),
          "relu": tf.keras.activations.relu,
thomwolf's avatar
thomwolf committed
150
151
          "swish": tf.keras.layers.Activation(swish),
          "gelu_new": tf.keras.layers.Activation(gelu_new)}
thomwolf's avatar
thomwolf committed
152
153
154
155
156
157
158


class TFBertEmbeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config, **kwargs):
        super(TFBertEmbeddings, self).__init__(**kwargs)
159
160
161
        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size

thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
169
        self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, config.hidden_size, name='position_embeddings')
        self.token_type_embeddings = tf.keras.layers.Embedding(config.type_vocab_size, config.hidden_size, name='token_type_embeddings')

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def build(self, input_shape):
        """Build shared word embedding layer """
        with tf.name_scope("word_embeddings"):
            # Create and initialize weights. The random normal initializer was chosen
            # arbitrarily, and works well.
            self.word_embeddings = self.add_weight(
                "weight",
                shape=[self.vocab_size, self.hidden_size],
                initializer=tf.random_normal_initializer(
                    mean=0., stddev=self.hidden_size**-0.5))
        super(TFBertEmbeddings, self).build(input_shape)

    def call(self, inputs, mode="embedding", training=False):
        """Get token embeddings of inputs.
        Args:
            inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.
        
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
            return self._embedding(inputs, training=training)
        elif mode == "linear":
            return self._linear(inputs)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, inputs, training=False):
        """Applies embedding based on inputs tensor."""
        # Create binary mask of size [batch_size, length]
thomwolf's avatar
thomwolf committed
207
208
209
210
211
212
213
214
        input_ids, position_ids, token_type_ids = inputs

        seq_length = tf.shape(input_ids)[1]
        if position_ids is None:
            position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
        if token_type_ids is None:
            token_type_ids = tf.fill(tf.shape(input_ids), 0)

215
        words_embeddings = tf.gather(self.word_embeddings, input_ids)
thomwolf's avatar
thomwolf committed
216
217
218
219
220
221
222
223
224
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        if training:
            embeddings = self.dropout(embeddings)
        return embeddings

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
            Args:
                inputs: A float32 tensor with shape [batch_size, length, hidden_size]
            Returns:
                float32 tensor with shape [batch_size, length, vocab_size].
        """
        batch_size = tf.shape(inputs)[0]
        length = tf.shape(inputs)[1]

        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.word_embeddings, transpose_b=True)

        return tf.reshape(logits, [batch_size, length, self.vocab_size])

thomwolf's avatar
thomwolf committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

class TFBertSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertSelfAttention, self).__init__(**kwargs)
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        assert config.hidden_size % config.num_attention_heads == 0
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = tf.keras.layers.Dense(self.all_head_size, name='query')
        self.key = tf.keras.layers.Dense(self.all_head_size, name='key')
        self.value = tf.keras.layers.Dense(self.all_head_size, name='value')

        self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
        return tf.transpose(x, perm=[0, 2, 1, 3])

    def call(self, inputs, training=False):
        hidden_states, attention_mask, head_mask = inputs

        batch_size = tf.shape(hidden_states)[0]
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)  # (batch size, num_heads, seq_len_q, seq_len_k)
        dk = tf.cast(tf.shape(key_layer)[-1], tf.float32) # scale attention_scores
        attention_scores = attention_scores / tf.math.sqrt(dk)
thomwolf's avatar
thomwolf committed
281
282
283
284

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
            attention_scores = attention_scores + attention_mask
thomwolf's avatar
thomwolf committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

        # Normalize the attention scores to probabilities.
        attention_probs = tf.nn.softmax(attention_scores, axis=-1)

        if training:
            # This is actually dropping out entire tokens to attend to, which might
            # seem a bit unusual, but is taken from the original Transformer paper.
            attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = tf.matmul(attention_probs, value_layer)

        context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
        context_layer = tf.reshape(context_layer, 
                                  (batch_size, -1, self.all_head_size))  # (batch_size, seq_len_q, all_head_size)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


class TFBertSelfOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertSelfOutput, self).__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

    def call(self, inputs, training=False):
        hidden_states, input_tensor = inputs

        hidden_states = self.dense(hidden_states)
        if training:
            hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class TFBertAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertAttention, self).__init__(**kwargs)
        self.self_attention = TFBertSelfAttention(config, name='self')
        self.dense_output = TFBertSelfOutput(config, name='output')

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(self, inputs, training=False):
        input_tensor, attention_mask, head_mask = inputs

        self_outputs = self.self_attention([input_tensor, attention_mask, head_mask], training=training)
        attention_output = self.dense_output([self_outputs[0], input_tensor], training=training)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class TFBertIntermediate(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertIntermediate, self).__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.intermediate_size, name='dense')
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def call(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class TFBertOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertOutput, self).__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

    def call(self, inputs, training=False):
        hidden_states, input_tensor = inputs

        hidden_states = self.dense(hidden_states)
        if training:
            hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class TFBertLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertLayer, self).__init__(**kwargs)
        self.attention = TFBertAttention(config, name='attention')
        self.intermediate = TFBertIntermediate(config, name='intermediate')
        self.bert_output = TFBertOutput(config, name='output')

    def call(self, inputs, training=False):
        hidden_states, attention_mask, head_mask = inputs

        attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.bert_output([intermediate_output, attention_output], training=training)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


class TFBertEncoder(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertEncoder, self).__init__(**kwargs)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layer = [TFBertLayer(config, name='layer_{}'.format(i)) for i in range(config.num_hidden_layers)]

    def call(self, inputs, training=False):
        hidden_states, attention_mask, head_mask = inputs

        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module([hidden_states, attention_mask, head_mask[i]], training=training)
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # outputs, (hidden states), (attentions)


class TFBertPooler(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertPooler, self).__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.hidden_size, activation='tanh', name='dense')

    def call(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        return pooled_output


class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertPredictionHeadTransform, self).__init__(**kwargs)
        self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')

    def call(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class TFBertLMPredictionHead(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
458
    def __init__(self, config, input_embeddings, **kwargs):
thomwolf's avatar
thomwolf committed
459
460
461
462
463
464
        super(TFBertLMPredictionHead, self).__init__(**kwargs)
        self.vocab_size = config.vocab_size
        self.transform = TFBertPredictionHeadTransform(config, name='transform')

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
465
        self.input_embeddings = input_embeddings
thomwolf's avatar
thomwolf committed
466
467
468
469
470
471

    def build(self, input_shape):
        self.bias = self.add_weight(shape=(self.vocab_size,),
                                    initializer='zeros',
                                    trainable=True,
                                    name='bias')
thomwolf's avatar
thomwolf committed
472
        super(TFBertLMPredictionHead, self).build(input_shape)
thomwolf's avatar
thomwolf committed
473
474
475

    def call(self, hidden_states):
        hidden_states = self.transform(hidden_states)
thomwolf's avatar
thomwolf committed
476
477
        hidden_states = self.input_embeddings(hidden_states, mode="linear")
        hidden_states = hidden_states + self.bias
thomwolf's avatar
thomwolf committed
478
479
480
481
        return hidden_states


class TFBertMLMHead(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
482
    def __init__(self, config, input_embeddings, **kwargs):
thomwolf's avatar
thomwolf committed
483
        super(TFBertMLMHead, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
484
        self.predictions = TFBertLMPredictionHead(config, input_embeddings, name='predictions')
thomwolf's avatar
thomwolf committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

    def call(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class TFBertNSPHead(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertNSPHead, self).__init__(**kwargs)
        self.seq_relationship = tf.keras.layers.Dense(2, name='seq_relationship')

    def call(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class TFBertMainLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertMainLayer, self).__init__(**kwargs)
        self.num_hidden_layers = config.num_hidden_layers

        self.embeddings = TFBertEmbeddings(config, name='embeddings')
        self.encoder = TFBertEncoder(config, name='encoder')
        self.pooler = TFBertPooler(config, name='pooler')

    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        raise NotImplementedError

    def call(self, inputs, training=False):
        if not isinstance(inputs, (dict, tuple, list)):
            input_ids = inputs
            attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else None
            token_type_ids = inputs[2] if len(inputs) > 2 else None
            position_ids = inputs[3] if len(inputs) > 3 else None
            head_mask = inputs[4] if len(inputs) > 4 else None
            assert len(inputs) <= 5, "Too many inputs."
        else:
thomwolf's avatar
thomwolf committed
532
533
534
535
536
537
            input_ids = inputs.get('input_ids')
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."
thomwolf's avatar
thomwolf committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

        if attention_mask is None:
            attention_mask = tf.fill(tf.shape(input_ids), 1)
        if token_type_ids is None:
            token_type_ids = tf.fill(tf.shape(input_ids), 0)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.

        extended_attention_mask = tf.cast(extended_attention_mask, tf.float32)
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if not head_mask is None:
            raise NotImplementedError
        else:
            head_mask = [None] * self.num_hidden_layers
            # head_mask = tf.constant([0] * self.num_hidden_layers)

        embedding_output = self.embeddings([input_ids, position_ids, token_type_ids], training=training)
        encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training)

        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)

thomwolf's avatar
thomwolf committed
580

thomwolf's avatar
thomwolf committed
581
582
583
584
585
586
class TFBertPreTrainedModel(TFPreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = BertConfig
    pretrained_model_archive_map = TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
587
    load_pt_weights = load_bert_pt_weights_in_tf2
thomwolf's avatar
thomwolf committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
    base_model_prefix = "bert"


BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.

    This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.

    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805

    .. _`tf.keras.Model`:
        https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model

    Important note on the model inputs:
        The inputs of the TF 2.0 models are slightly different from the PyTorch ones since
        TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor.
        More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`.
        There are three possibilities to gather and feed the inputs to the model:

        - a single Tensor with input_ids only and nothing else: `model(inputs_ids)
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
            `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associaed to the input names given in the docstring:
            `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`

    Parameters:
        config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. 
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``

            Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertModel(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertModel.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
692
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
thomwolf's avatar
thomwolf committed
693
694
695
696
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
thomwolf's avatar
thomwolf committed
697
698
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertModel, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
        self.bert = TFBertMainLayer(config, name='bert')

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)
        return outputs


@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
    a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForPreTraining(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForPreTraining.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, seq_relationship_scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
733
734
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForPreTraining, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
735
736
737

        self.bert = TFBertMainLayer(config, name='bert')
        self.cls_nsp = TFBertNSPHead(config, name='cls_nsp')
thomwolf's avatar
thomwolf committed
738
        self.cls_mlm = TFBertMLMHead(config, self.bert.embeddings, name='cls_mlm')
thomwolf's avatar
thomwolf committed
739
740
741
742
743

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
744
        prediction_scores = self.cls_mlm(sequence_output, training=training)
thomwolf's avatar
thomwolf committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        seq_relationship_score = self.cls_nsp(pooled_output)

        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # prediction_scores, seq_relationship_score, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForMaskedLM(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForMaskedLM.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
thomwolf's avatar
thomwolf committed
772
773
        outputs = model(input_ids)
        prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
774
775

    """
thomwolf's avatar
thomwolf committed
776
777
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForMaskedLM, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
778
779

        self.bert = TFBertMainLayer(config, name='bert')
thomwolf's avatar
thomwolf committed
780
        self.cls_mlm = TFBertMLMHead(config, self.bert.embeddings, name='cls_mlm')
thomwolf's avatar
thomwolf committed
781
782
783
784
785

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
786
        prediction_scores = self.cls_mlm(sequence_output, training=training)
thomwolf's avatar
thomwolf committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here

        return outputs  # prediction_scores, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Next sequence prediction (classification) loss.
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        seq_relationship_scores = outputs[0]

    """
thomwolf's avatar
thomwolf committed
819
820
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForNextSentencePrediction, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
821
822
823
824
825
826
827
828
829
830
831
832
833

        self.bert = TFBertMainLayer(config, name='bert')
        self.cls_nsp = TFBertNSPHead(config, name='cls_nsp')

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)

        pooled_output = outputs[1]
        seq_relationship_score = self.cls_nsp(pooled_output)

        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856


@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForSequenceClassification(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
thomwolf's avatar
thomwolf committed
857
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
858
859
860
        loss, logits = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
861
862
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
863
864
865
866
867
868
869
870
871
872
873
        self.num_labels = config.num_labels

        self.bert = TFBertMainLayer(config, name='bert')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        self.classifier = tf.keras.layers.Dense(config.num_labels, name='classifier')

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)

        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
874
875
        if training:
            pooled_output = self.dropout(pooled_output)
thomwolf's avatar
thomwolf committed
876
877
878
879
880
881
882
883
884
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # logits, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
thomwolf's avatar
thomwolf committed
885
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
class TFBertForMultipleChoice(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
thomwolf's avatar
thomwolf committed
906
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
907
908
909
        loss, classification_scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
910
911
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForMultipleChoice, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

        self.bert = TFBertMainLayer(config, name='bert')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        self.classifier = tf.keras.layers.Dense(1, name='classifier')

    def call(self, inputs, training=False):
        if not isinstance(inputs, (dict, tuple, list)):
            input_ids = inputs
            attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else None
            token_type_ids = inputs[2] if len(inputs) > 2 else None
            position_ids = inputs[3] if len(inputs) > 3 else None
            head_mask = inputs[4] if len(inputs) > 4 else None
            assert len(inputs) <= 5, "Too many inputs."
        else:
            input_ids = inputs.get('input_ids')
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."

        num_choices = tf.shape(input_ids)[1]
        seq_length = tf.shape(input_ids)[2]

        flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
        flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
        flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
        flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None

        flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]

        outputs = self.bert(flat_inputs, training=training)

        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
950
951
        if training:
            pooled_output = self.dropout(pooled_output)
thomwolf's avatar
thomwolf committed
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
        logits = self.classifier(pooled_output)
        reshaped_logits = tf.reshape(logits, (-1, num_choices))

        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # reshaped_logits, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForTokenClassification(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
thomwolf's avatar
thomwolf committed
981
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
982
983
984
        loss, scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
985
986
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForTokenClassification, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
987
988
989
990
991
992
993
994
995
996
997
        self.num_labels = config.num_labels

        self.bert = TFBertMainLayer(config, name='bert')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
        self.classifier = tf.keras.layers.Dense(config.num_labels, name='classifier')

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)

        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
998
999
        if training:
            sequence_output = self.dropout(sequence_output)
thomwolf's avatar
thomwolf committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # scores, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForQuestionAnswering(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
1036
1037
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        self.num_labels = config.num_labels

        self.bert = TFBertMainLayer(config, name='bert')
        self.qa_outputs = tf.keras.layers.Dense(config.num_labels, name='qa_outputs')

    def call(self, inputs, training=False):
        outputs = self.bert(inputs, training=training)

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = tf.split(logits, 2, axis=-1)
        start_logits = tf.squeeze(start_logits, axis=-1)
        end_logits = tf.squeeze(end_logits, axis=-1)

        outputs = (start_logits, end_logits,) + outputs[2:]

        return outputs  # start_logits, end_logits, (hidden_states), (attentions)