test_modeling_univnet.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import inspect
import random
import unittest

from datasets import Audio, load_dataset

from transformers import UnivNetConfig, UnivNetFeatureExtractor
from transformers.testing_utils import (
    is_torch_available,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    floats_tensor,
)


if is_torch_available():
    import torch

    from transformers import UnivNetModel


class UnivNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=7,
        in_channels=8,
        hidden_channels=8,
        num_mel_bins=20,
        kernel_predictor_hidden_channels=8,
        seed=0,
        is_training=False,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.num_mel_bins = num_mel_bins
        self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels
        self.seed = seed
        self.is_training = is_training

    def prepare_noise_sequence(self):
        generator = torch.manual_seed(self.seed)
69
        noise_shape = (self.batch_size, self.seq_length, self.in_channels)
70
71
72
73
74
        # Create noise on CPU for reproducibility
        noise_sequence = torch.randn(noise_shape, generator=generator, dtype=torch.float)
        return noise_sequence

    def prepare_config_and_inputs(self):
75
        spectrogram = floats_tensor([self.batch_size, self.seq_length, self.num_mel_bins], scale=1.0)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        noise_sequence = self.prepare_noise_sequence()
        noise_sequence = noise_sequence.to(spectrogram.device)
        config = self.get_config()
        return config, spectrogram, noise_sequence

    def get_config(self):
        return UnivNetConfig(
            model_in_channels=self.in_channels,
            model_hidden_channels=self.hidden_channels,
            num_mel_bins=self.num_mel_bins,
            kernel_predictor_hidden_channels=self.kernel_predictor_hidden_channels,
        )

    def create_and_check_model(self, config, spectrogram, noise_sequence):
        model = UnivNetModel(config=config).to(torch_device).eval()
        result = model(spectrogram, noise_sequence)[0]
92
        self.parent.assertEqual(result.shape, (self.batch_size, self.seq_length * 256))
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    def prepare_config_and_inputs_for_common(self):
        config, spectrogram, noise_sequence = self.prepare_config_and_inputs()
        inputs_dict = {"input_features": spectrogram, "noise_sequence": noise_sequence}
        return config, inputs_dict


@require_torch
class UnivNetModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (UnivNetModel,) if is_torch_available() else ()
    # UnivNetModel currently cannot be traced with torch.jit.trace.
    test_torchscript = False
    # The UnivNetModel is not a transformer and does not use any attention mechanisms, so skip transformer/attention
    # related tests.
    test_pruning = False
    test_resize_embeddings = False
    test_resize_position_embeddings = False
    test_head_masking = False
    # UnivNetModel is not a sequence classification model.
    test_mismatched_shapes = False
    # UnivNetModel does not have a base_model_prefix attribute.
    test_missing_keys = False
    # UnivNetModel does not implement a parallelize method.
    test_model_parallel = False
    is_encoder_decoder = False
    has_attentions = False

    input_name = "input_features"

    def setUp(self):
        self.model_tester = UnivNetModelTester(self)
124
125
126
        self.config_tester = ConfigTester(
            self, config_class=UnivNetConfig, has_text_modality=False, common_properties=["num_mel_bins"]
        )
127

128
129
130
131
    @unittest.skip(reason="fix this once it gets more usage")
    def test_multi_gpu_data_parallel_forward(self):
        super().test_multi_gpu_data_parallel_forward()

132
    def test_config(self):
133
        self.config_tester.run_common_tests()
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = [
                "input_features",
            ]
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    @unittest.skip(reason="UnivNetModel does not output hidden_states.")
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="UnivNetModel.forward does not accept an inputs_embeds argument.")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="UnivNetModel does not use input embeddings and thus has no get_input_embeddings method.")
162
    def test_model_get_set_embeddings(self):
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        pass

    @unittest.skip(reason="UnivNetModel does not support all arguments tested, such as output_hidden_states.")
    def test_model_outputs_equivalence(self):
        pass

    @unittest.skip(reason="UnivNetModel does not output hidden_states.")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    def test_batched_inputs_outputs(self):
        config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

181
182
            batched_spectrogram = inputs["input_features"]
            batched_noise_sequence = inputs["noise_sequence"]
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            with torch.no_grad():
                batched_outputs = model(
                    batched_spectrogram.to(torch_device),
                    batched_noise_sequence.to(torch_device),
                )[0]

            self.assertEqual(
                batched_spectrogram.shape[0],
                batched_outputs.shape[0],
                msg="Got different batch dims for input and output",
            )

    def test_unbatched_inputs_outputs(self):
        config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
204
205
                outputs = model(
                    inputs["input_features"][:1].to(torch_device), inputs["noise_sequence"][:1].to(torch_device)
206
                )[0]
207
            self.assertTrue(outputs.shape[0] == 1, msg="Unbatched input should create batched output with bsz = 1")
208
209
210
211
212
213
214
215
216
217
218


@require_torch_gpu
@slow
class UnivNetModelIntegrationTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def _load_datasamples(self, num_samples, sampling_rate=24000):
219
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        ds = ds.cast_column("audio", Audio(sampling_rate=sampling_rate))
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples]

    def get_inputs(self, device, num_samples: int = 3, noise_length: int = 10, seed: int = 0):
        generator = torch.manual_seed(seed)
        # Note: hardcode model_in_channels -> 64
        if num_samples == 1:
            noise_sequence_shape = (64, noise_length)
        else:
            noise_sequence_shape = (num_samples, 64, noise_length)
        # Explicity generate noise_sequence on CPU for consistency.
        noise_sequence = torch.randn(noise_sequence_shape, generator=generator, dtype=torch.float32, device="cpu")
        # Put noise_sequence on the desired device.
        noise_sequence = noise_sequence.to(device)

        # Note: hardcode num_mel_channels -> 100
        if num_samples == 1:
            spectrogram_shape = [100, noise_length]
        else:
            spectrogram_shape = [num_samples, 100, noise_length]
        spectrogram = floats_tensor(spectrogram_shape, scale=1.0, rng=random.Random(seed))
        # Note: spectrogram should already be on torch_device

        # Permute to match diffusers implementation
        if num_samples == 1:
            noise_sequence = noise_sequence.transpose(1, 0)
            spectrogram = spectrogram.transpose(1, 0)
        else:
            noise_sequence = noise_sequence.transpose(2, 1)
            spectrogram = spectrogram.transpose(2, 1)

        inputs = {
            "input_features": spectrogram,
            "noise_sequence": noise_sequence,
            "generator": generator,
        }

        return inputs

    def test_model_inference_batched(self):
        # Load sample checkpoint from Tortoise TTS
        model = UnivNetModel.from_pretrained("dg845/univnet-dev")
        model.eval().to(torch_device)

        # Get batched noise and spectrogram inputs.
        input_speech = self.get_inputs(torch_device, num_samples=3)

        with torch.no_grad():
            waveform = model(**input_speech)[0]
        waveform = waveform.cpu()

        waveform_mean = torch.mean(waveform)
        waveform_stddev = torch.std(waveform)
        waveform_slice = waveform[-1, -9:].flatten()

        EXPECTED_MEAN = torch.tensor(-0.19989729)
        EXPECTED_STDDEV = torch.tensor(0.35230172)
        EXPECTED_SLICE = torch.tensor([-0.3408, -0.6045, -0.5052, 0.1160, -0.1556, -0.0405, -0.3024, -0.5290, -0.5019])

        torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5)
        torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5)
        torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-4, rtol=1e-5)

    def test_model_inference_unbatched(self):
        # Load sample checkpoint from Tortoise TTS
        model = UnivNetModel.from_pretrained("dg845/univnet-dev")
        model.eval().to(torch_device)

        # Get unbatched noise and spectrogram inputs.
        input_speech = self.get_inputs(torch_device, num_samples=1)

        with torch.no_grad():
            waveform = model(**input_speech)[0]
        waveform = waveform.cpu()

        waveform_mean = torch.mean(waveform)
        waveform_stddev = torch.std(waveform)
        waveform_slice = waveform[-1, -9:].flatten()

        EXPECTED_MEAN = torch.tensor(-0.22895093)
        EXPECTED_STDDEV = torch.tensor(0.33986747)
        EXPECTED_SLICE = torch.tensor([-0.3276, -0.5504, -0.3484, 0.3574, -0.0373, -0.1826, -0.4880, -0.6431, -0.5162])

        torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5)
        torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5)
        torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=1e-3, rtol=1e-5)

    def test_integration(self):
        feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev")
        model = UnivNetModel.from_pretrained("dg845/univnet-dev")
        model.eval().to(torch_device)

        audio, sr = self._load_datasamples(1, sampling_rate=feature_extractor.sampling_rate)

        input_features = feature_extractor(audio, sampling_rate=sr[0], return_tensors="pt").input_features
        input_features = input_features.to(device=torch_device)

        input_speech = self.get_inputs(torch_device, num_samples=1, noise_length=input_features.shape[1])
        input_speech["input_features"] = input_features

        with torch.no_grad():
            waveform = model(**input_speech)[0]
        waveform = waveform.cpu()

        waveform_mean = torch.mean(waveform)
        waveform_stddev = torch.std(waveform)
        waveform_slice = waveform[-1, -9:].flatten()

        EXPECTED_MEAN = torch.tensor(0.00051374)
        EXPECTED_STDDEV = torch.tensor(0.058105603)
        # fmt: off
        EXPECTED_SLICE = torch.tensor([-4.3934e-04, -1.8203e-04, -3.3033e-04, -3.8716e-04, -1.6125e-04, 3.5389e-06, -3.3149e-04, -3.7613e-04, -2.3331e-04])
        # fmt: on

        torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=5e-6, rtol=1e-5)
        torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5)
        torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-6, rtol=1e-5)