test_feature_extraction_univnet.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import os
import random
import tempfile
import unittest

import numpy as np
from datasets import Audio, load_dataset

from transformers import UnivNetFeatureExtractor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, slow
from transformers.utils.import_utils import is_torch_available

from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin


if is_torch_available():
    import torch


global_rng = random.Random()


# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


class UnivNetFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=1,
        sampling_rate=24000,
        padding_value=0.0,
        do_normalize=True,
        num_mel_bins=100,
        hop_length=256,
        win_length=1024,
        win_function="hann_window",
        filter_length=1024,
        max_length_s=10,
        fmin=0.0,
        fmax=12000,
        mel_floor=1e-9,
        center=False,
        compression_factor=1.0,
        compression_clip_val=1e-5,
        normalize_min=-11.512925148010254,
        normalize_max=2.3143386840820312,
        model_in_channels=64,
        pad_end_length=10,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)

        self.feature_size = feature_size
        self.sampling_rate = sampling_rate
        self.padding_value = padding_value
        self.do_normalize = do_normalize
        self.num_mel_bins = num_mel_bins
        self.hop_length = hop_length
        self.win_length = win_length
        self.win_function = win_function
        self.filter_length = filter_length
        self.max_length_s = max_length_s
        self.fmin = fmin
        self.fmax = fmax
        self.mel_floor = mel_floor
        self.center = center
        self.compression_factor = compression_factor
        self.compression_clip_val = compression_clip_val
        self.normalize_min = normalize_min
        self.normalize_max = normalize_max
        self.model_in_channels = model_in_channels
        self.pad_end_length = pad_end_length

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "sampling_rate": self.sampling_rate,
            "padding_value": self.padding_value,
            "do_normalize": self.do_normalize,
            "num_mel_bins": self.num_mel_bins,
            "hop_length": self.hop_length,
            "win_length": self.win_length,
            "win_function": self.win_function,
            "filter_length": self.filter_length,
            "max_length_s": self.max_length_s,
            "fmin": self.fmin,
            "fmax": self.fmax,
            "mel_floor": self.mel_floor,
            "center": self.center,
            "compression_factor": self.compression_factor,
            "compression_clip_val": self.compression_clip_val,
            "normalize_min": self.normalize_min,
            "normalize_max": self.normalize_max,
            "model_in_channels": self.model_in_channels,
            "pad_end_length": self.pad_end_length,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = floats_list((self.batch_size, self.max_seq_length))
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                _flatten(floats_list((x, self.feature_size)))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]

        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]

        return speech_inputs


class UnivNetFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
    feature_extraction_class = UnivNetFeatureExtractor

    def setUp(self):
        self.feat_extract_tester = UnivNetFeatureExtractionTester(self)

    # Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_from_and_save_pretrained
    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        dict_first = feat_extract_first.to_dict()
        dict_second = feat_extract_second.to_dict()
        mel_1 = feat_extract_first.mel_filters
        mel_2 = feat_extract_second.mel_filters
        self.assertTrue(np.allclose(mel_1, mel_2))
        self.assertEqual(dict_first, dict_second)

    # Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_to_json_file
    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        dict_first = feat_extract_first.to_dict()
        dict_second = feat_extract_second.to_dict()
        mel_1 = feat_extract_first.mel_filters
        mel_2 = feat_extract_second.mel_filters
        self.assertTrue(np.allclose(mel_1, mel_2))
        self.assertEqual(dict_first, dict_second)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test feature size
        input_features = feature_extractor(
            np_speech_inputs, padding="max_length", max_length=1600, return_tensors="np"
        ).input_features
        self.assertTrue(input_features.ndim == 3)
        # Note: for some reason I get a weird padding error when feature_size > 1
        # self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)
        # Note: we use the shape convention (batch_size, seq_len, num_mel_bins)
        self.assertTrue(input_features.shape[-1] == feature_extractor.num_mel_bins)

        # Test not batched input
        encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

        # Test 2-D numpy arrays are batched.
        speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
        np_speech_inputs = np.asarray(speech_inputs)
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

        # Test truncation required
        speech_inputs = [
            floats_list((1, x))[0]
            for x in range((feature_extractor.num_max_samples - 100), (feature_extractor.num_max_samples + 500), 200)
        ]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        speech_inputs_truncated = [x[: feature_extractor.num_max_samples] for x in speech_inputs]
        np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]

        encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_batched_unbatched_consistency(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        speech_inputs = floats_list((1, 800))[0]
        np_speech_inputs = np.asarray(speech_inputs)

        # Test unbatched vs batched list
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor([speech_inputs], return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

        # Test np.ndarray vs List[np.ndarray]
        encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor([np_speech_inputs], return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

        # Test unbatched np.ndarray vs batched np.ndarray
        encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(
            np.expand_dims(np_speech_inputs, axis=0), return_tensors="np"
        ).input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_generate_noise(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        features = feature_extractor(speech_inputs, return_noise=True)
        input_features = features.input_features
        noise_features = features.noise_sequence

        for spectrogram, noise in zip(input_features, noise_features):
            self.assertEqual(spectrogram.shape[0], noise.shape[0])

    def test_pad_end(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        input_features1 = feature_extractor(speech_inputs, padding=False, pad_end=False).input_features
        input_features2 = feature_extractor(speech_inputs, padding=False, pad_end=True).input_features

        for spectrogram1, spectrogram2 in zip(input_features1, input_features2):
            self.assertEqual(spectrogram1.shape[0] + self.feat_extract_tester.pad_end_length, spectrogram2.shape[0])

    def test_generate_noise_and_pad_end(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        features = feature_extractor(speech_inputs, padding=False, return_noise=True, pad_end=True)
        input_features = features.input_features
        noise_features = features.noise_sequence

        for spectrogram, noise in zip(input_features, noise_features):
            self.assertEqual(spectrogram.shape[0], noise.shape[0])

    @require_torch
    def test_batch_decode(self):
        import torch

        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        input_lengths = list(range(800, 1400, 200))
        pad_samples = feature_extractor.pad_end_length * feature_extractor.hop_length
        output_features = {
            "waveforms": torch.tensor(floats_list((3, max(input_lengths) + pad_samples))),
            "waveform_lengths": torch.tensor(input_lengths),
        }
        waveforms = feature_extractor.batch_decode(**output_features)

        for input_length, waveform in zip(input_lengths, waveforms):
            self.assertTrue(len(waveform.shape) == 1, msg="Individual output waveforms should be 1D")
            self.assertEqual(waveform.shape[0], input_length)

    @require_torch
    # Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_double_precision_pad
    def test_double_precision_pad(self):
        import torch

        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_features.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_features.dtype == torch.float32)

    def _load_datasamples(self, num_samples):
330
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        ds = ds.cast_column("audio", Audio(sampling_rate=self.feat_extract_tester.sampling_rate))
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples]

    @slow
    @require_torch
    def test_integration(self):
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                -5.0229, -6.1358, -5.8346, -5.4447, -5.6707, -5.8577, -5.0464, -5.0058,
                -5.6015, -5.6410, -5.4325, -5.6116, -5.3700, -5.7956, -5.3196, -5.3274,
                -5.9655, -5.6057, -5.8382, -5.9602, -5.9005, -5.9123, -5.7669, -6.1441,
                -5.5168, -5.1405, -5.3927, -6.0032, -5.5784, -5.3728
            ],
        )
        # fmt: on

        input_speech, sr = self._load_datasamples(1)

        feature_extractor = UnivNetFeatureExtractor()
        input_features = feature_extractor(input_speech, sampling_rate=sr[0], return_tensors="pt").input_features
        self.assertEqual(input_features.shape, (1, 548, 100))

        input_features_mean = torch.mean(input_features)
        input_features_stddev = torch.std(input_features)

        EXPECTED_MEAN = torch.tensor(-6.18862009)
        EXPECTED_STDDEV = torch.tensor(2.80845642)

        torch.testing.assert_close(input_features_mean, EXPECTED_MEAN, atol=5e-5, rtol=5e-6)
        torch.testing.assert_close(input_features_stddev, EXPECTED_STDDEV)
        torch.testing.assert_close(input_features[0, :30, 0], EXPECTED_INPUT_FEATURES, atol=1e-4, rtol=1e-5)