optimization.py 6.38 KB
Newer Older
1
2
3
4
5
6
import math
import torch
from torch.optim import Optimizer
from torch.nn.utils import clip_grad_norm_

def warmup_cosine(x, warmup=0.002):
thomwolf's avatar
thomwolf committed
7
8
9
    if x < warmup:
        return x/warmup
    return 0.5 * (1.0 + torch.cos(math.pi * x))
10
11

def warmup_constant(x, warmup=0.002):
thomwolf's avatar
thomwolf committed
12
13
14
    if x < warmup:
        return x/warmup
    return 1.0
15
16

def warmup_linear(x, warmup=0.002):
thomwolf's avatar
thomwolf committed
17
18
19
    if x < warmup:
        return x/warmup
    return 1.0 - x
20
21
22
23
24
25
26
27

SCHEDULES = {
    'warmup_cosine':warmup_cosine,
    'warmup_constant':warmup_constant,
    'warmup_linear':warmup_linear,
}


thomwolf's avatar
thomwolf committed
28
class BERTAdam(Optimizer):
29
    """Implements Open AI version of Adam algorithm with weight decay fix.
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
    Params:
        lr,
        warmup=-1,
        t_total=-1,
        schedule='warmup_linear',
        b1=0.9,
        b2=0.999,
        e=1e-6,
        weight_decay_rate=0.01,
        max_grad_norm=1.0
40
    """
thomwolf's avatar
thomwolf committed
41
42
43
44
45
    def __init__(self, params, lr, warmup=-1, t_total=-1, schedule='warmup_linear',
                 b1=0.9, b2=0.999, e=1e-6, weight_decay_rate=0.01,
                 max_grad_norm=1.0):
        if not lr >= 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
46
47
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
thomwolf's avatar
thomwolf committed
48
49
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
50
        if not 0.0 <= b1 < 1.0:
thomwolf's avatar
thomwolf committed
51
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
52
        if not 0.0 <= b2 < 1.0:
thomwolf's avatar
thomwolf committed
53
54
55
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
56
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
thomwolf's avatar
thomwolf committed
57
                        b1=b1, b2=b2, e=e, weight_decay_rate=weight_decay_rate,
58
                        max_grad_norm=max_grad_norm)
thomwolf's avatar
thomwolf committed
59
        super(BERTAdam, self).__init__(params, defaults)
60
61
62
63
64
65
66
67

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
thomwolf's avatar
thomwolf committed
68
69
70
71
72
                if group['t_total'] != -1:
                    schedule_fct = SCHEDULES[group['schedule']]
                    lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
                else:
                    lr_scheduled = group['lr']
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
                lr.append(lr_scheduled)
        return lr

    def to(self, device):
        """ Move the optimizer state to a specified device"""
        for state in self.state.values():
            state['exp_avg'].to(device)
            state['exp_avg_sq'].to(device)

    def initialize_step(self, initial_step):
        """Initialize state with a defined step (but we don't have stored averaged).
        Arguments:
            initial_step (int): Initial step number.
        """
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                # State initialization
                state['step'] = initial_step
                # Exponential moving average of gradient values
                state['exp_avg'] = torch.zeros_like(p.data)
                # Exponential moving average of squared gradient values
                state['exp_avg_sq'] = torch.zeros_like(p.data)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
122
                    state['next_m'] = torch.zeros_like(p.data)
123
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
124
                    state['next_v'] = torch.zeros_like(p.data)
125

thomwolf's avatar
thomwolf committed
126
                next_m, next_v = state['next_m'], state['next_v']
127
128
129
130
131
132
133
                beta1, beta2 = group['b1'], group['b2']

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
134
135
136
137
                # In-place operations to update the averages at the same time
                next_m.mul_(beta1).add_(1 - beta1, grad)
                next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                update = next_m / (next_v.sqrt() + group['e'])
138
139
140
141
142
143
144
145

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
                # Instead we want ot decay the weights in a manner that doesn't interact
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
thomwolf's avatar
thomwolf committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
                if group['weight_decay_rate'] > 0.0:
                    update += group['weight_decay_rate'] * p.data

                if group['t_total'] != -1:
                    schedule_fct = SCHEDULES[group['schedule']]
                    lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
                else:
                    lr_scheduled = group['lr']

                update_with_lr = lr_scheduled * update
                p.data.add_(-update_with_lr)

                state['step'] += 1

                # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
163
164

        return loss