tokenization_xlm.py 8.26 KB
Newer Older
thomwolf's avatar
xlm  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import re
from io import open

25
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
26
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
xlm  
thomwolf committed
27
28
29

logger = logging.getLogger(__name__)

30
31
32
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
xlm  
thomwolf committed
33
}
34
35
36
37
38
39
40
41
42
43

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
    },
    'merges_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
    },
thomwolf's avatar
xlm  
thomwolf committed
44
}
45
46

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
xlm  
thomwolf committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    'xlm-mlm-en-2048': 512,
}

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

77
class XLMTokenizer(PreTrainedTokenizer):
thomwolf's avatar
xlm  
thomwolf committed
78
79
    """
    BPE tokenizer for XLM, adapted from OpenAI BPE tokenizer. Peculiarities:
80

thomwolf's avatar
xlm  
thomwolf committed
81
        - lower case all inputs
82
83
84
85
86
87
88

        - uses `SpaCy tokenizer <https://spacy.io/api/tokenizer/>`_ and \
        `ftfy <https://ftfy.readthedocs.io/en/latest/>`_ for pre-BPE tokenization if they are installed, \
        fallback to BERT's BasicTokenizer if not.

        - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
        (ex: "__classify__") to a vocabulary.
thomwolf's avatar
xlm  
thomwolf committed
89
    """
90
91
92
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
xlm  
thomwolf committed
93

94
95
96
97
98
99
100
101
102
103
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
                 sep_token="</s>", pad_token="<pad>", cls_token="</s>",
                 mask_token="<special1>", additional_special_tokens=["<special0>",
                 "<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
                 "<special6>", "<special7>", "<special8>", "<special9>"], **kwargs):
        super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
                                           sep_token=sep_token, pad_token=pad_token,
                                           cls_token=cls_token, mask_token=mask_token,
                                           additional_special_tokens=additional_special_tokens,
                                           **kwargs)
thomwolf's avatar
xlm  
thomwolf committed
104
105
106
107
108
109
110
        try:
            import ftfy
            import spacy
            self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
            self.fix_text = ftfy.fix_text
        except ImportError:
            logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
111
            self.nlp = BasicTokenizer(do_lower_case=True)
thomwolf's avatar
xlm  
thomwolf committed
112
113
114
115
116
117
118
119
            self.fix_text = None

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v:k for k,v in self.encoder.items()}
        merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
120

121
122
123
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
xlm  
thomwolf committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

168
    def _tokenize(self, text):
thomwolf's avatar
xlm  
thomwolf committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        """ Tokenize a string. """
        split_tokens = []
        if self.fix_text is None:
            # Using BERT's BasicTokenizer
            text = self.nlp.tokenize(text)
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
            # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
            text = self.nlp(text_standardize(self.fix_text(text)))
            for token in text:
                split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
        return split_tokens

183
184
185
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
xlm  
thomwolf committed
186

187
188
189
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index, self.unk_token)
thomwolf's avatar
xlm  
thomwolf committed
190

191
    def _convert_ids_to_string(self, tokens_ids):
thomwolf's avatar
xlm  
thomwolf committed
192
        """Converts a sequence of ids in a string."""
193
        out_string = ''.join(tokens_ids).replace('</w>', ' ').strip()
thomwolf's avatar
xlm  
thomwolf committed
194
195
        return out_string

196
    def save_vocabulary(self, save_directory):
thomwolf's avatar
xlm  
thomwolf committed
197
        """Save the tokenizer vocabulary and merge files to a directory."""
198
199
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
xlm  
thomwolf committed
200
            return
201
202
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
xlm  
thomwolf committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

217
        return vocab_file, merge_file