usage.rst 11.9 KB
Newer Older
1
2
3
4
5
6
Usage
================================================

BERT
^^^^

7
Here is a quick-start example using ``BertTokenizer``\ , ``BertModel`` and ``BertForMaskedLM`` class with Google AI's pre-trained ``Bert base uncased`` model. See the `doc section <./model_doc/overview.html>`_ below for all the details on these classes.
8
9
10
11
12
13

First let's prepare a tokenized input with ``BertTokenizer``

.. code-block:: python

   import torch
14
   from pytorch_transformers import BertTokenizer, BertModel, BertForMaskedLM
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

   # OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
   import logging
   logging.basicConfig(level=logging.INFO)

   # Load pre-trained model tokenizer (vocabulary)
   tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

   # Tokenized input
   text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
   tokenized_text = tokenizer.tokenize(text)

   # Mask a token that we will try to predict back with `BertForMaskedLM`
   masked_index = 8
   tokenized_text[masked_index] = '[MASK]'
   assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']

   # Convert token to vocabulary indices
   indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
   # Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
   segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

   # Convert inputs to PyTorch tensors
   tokens_tensor = torch.tensor([indexed_tokens])
   segments_tensors = torch.tensor([segments_ids])

Let's see how to use ``BertModel`` to get hidden states

.. code-block:: python

   # Load pre-trained model (weights)
   model = BertModel.from_pretrained('bert-base-uncased')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor = tokens_tensor.to('cuda')
   segments_tensors = segments_tensors.to('cuda')
   model.to('cuda')

   # Predict hidden states features for each layer
   with torch.no_grad():
       encoded_layers, _ = model(tokens_tensor, segments_tensors)
   # We have a hidden states for each of the 12 layers in model bert-base-uncased
   assert len(encoded_layers) == 12

And how to use ``BertForMaskedLM``

.. code-block:: python

   # Load pre-trained model (weights)
   model = BertForMaskedLM.from_pretrained('bert-base-uncased')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor = tokens_tensor.to('cuda')
   segments_tensors = segments_tensors.to('cuda')
   model.to('cuda')

   # Predict all tokens
   with torch.no_grad():
       predictions = model(tokens_tensor, segments_tensors)

   # confirm we were able to predict 'henson'
   predicted_index = torch.argmax(predictions[0, masked_index]).item()
   predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
   assert predicted_token == 'henson'

OpenAI GPT
^^^^^^^^^^

85
Here is a quick-start example using ``OpenAIGPTTokenizer``\ , ``OpenAIGPTModel`` and ``OpenAIGPTLMHeadModel`` class with OpenAI's pre-trained  model. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
86
87
88
89
90
91

First let's prepare a tokenized input with ``OpenAIGPTTokenizer``

.. code-block:: python

   import torch
92
   from pytorch_transformers import OpenAIGPTTokenizer, OpenAIGPTModel, OpenAIGPTLMHeadModel
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

   # OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
   import logging
   logging.basicConfig(level=logging.INFO)

   # Load pre-trained model tokenizer (vocabulary)
   tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')

   # Tokenized input
   text = "Who was Jim Henson ? Jim Henson was a puppeteer"
   tokenized_text = tokenizer.tokenize(text)

   # Convert token to vocabulary indices
   indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)

   # Convert inputs to PyTorch tensors
   tokens_tensor = torch.tensor([indexed_tokens])

Let's see how to use ``OpenAIGPTModel`` to get hidden states

.. code-block:: python

   # Load pre-trained model (weights)
   model = OpenAIGPTModel.from_pretrained('openai-gpt')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor = tokens_tensor.to('cuda')
   model.to('cuda')

   # Predict hidden states features for each layer
   with torch.no_grad():
       hidden_states = model(tokens_tensor)

And how to use ``OpenAIGPTLMHeadModel``

.. code-block:: python

   # Load pre-trained model (weights)
   model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor = tokens_tensor.to('cuda')
   model.to('cuda')

   # Predict all tokens
   with torch.no_grad():
       predictions = model(tokens_tensor)

   # get the predicted last token
   predicted_index = torch.argmax(predictions[0, -1, :]).item()
   predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
   assert predicted_token == '.</w>'

And how to use ``OpenAIGPTDoubleHeadsModel``

.. code-block:: python

   # Load pre-trained model (weights)
   model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
   model.eval()

   #  Prepare tokenized input
   text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
   text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
   tokenized_text1 = tokenizer.tokenize(text1)
   tokenized_text2 = tokenizer.tokenize(text2)
   indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
   indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
   tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
   mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])

   # Predict hidden states features for each layer
   with torch.no_grad():
       lm_logits, multiple_choice_logits = model(tokens_tensor, mc_token_ids)

Transformer-XL
^^^^^^^^^^^^^^

173
Here is a quick-start example using ``TransfoXLTokenizer``\ , ``TransfoXLModel`` and ``TransfoXLModelLMHeadModel`` class with the Transformer-XL model pre-trained on WikiText-103. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
174
175
176
177
178
179

First let's prepare a tokenized input with ``TransfoXLTokenizer``

.. code-block:: python

   import torch
180
   from pytorch_transformers import TransfoXLTokenizer, TransfoXLModel, TransfoXLLMHeadModel
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

   # OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
   import logging
   logging.basicConfig(level=logging.INFO)

   # Load pre-trained model tokenizer (vocabulary from wikitext 103)
   tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')

   # Tokenized input
   text_1 = "Who was Jim Henson ?"
   text_2 = "Jim Henson was a puppeteer"
   tokenized_text_1 = tokenizer.tokenize(text_1)
   tokenized_text_2 = tokenizer.tokenize(text_2)

   # Convert token to vocabulary indices
   indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
   indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)

   # Convert inputs to PyTorch tensors
   tokens_tensor_1 = torch.tensor([indexed_tokens_1])
   tokens_tensor_2 = torch.tensor([indexed_tokens_2])

Let's see how to use ``TransfoXLModel`` to get hidden states

.. code-block:: python

   # Load pre-trained model (weights)
   model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor_1 = tokens_tensor_1.to('cuda')
   tokens_tensor_2 = tokens_tensor_2.to('cuda')
   model.to('cuda')

   with torch.no_grad():
       # Predict hidden states features for each layer
       hidden_states_1, mems_1 = model(tokens_tensor_1)
       # We can re-use the memory cells in a subsequent call to attend a longer context
       hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)

And how to use ``TransfoXLLMHeadModel``

.. code-block:: python

   # Load pre-trained model (weights)
   model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor_1 = tokens_tensor_1.to('cuda')
   tokens_tensor_2 = tokens_tensor_2.to('cuda')
   model.to('cuda')

   with torch.no_grad():
       # Predict all tokens
       predictions_1, mems_1 = model(tokens_tensor_1)
       # We can re-use the memory cells in a subsequent call to attend a longer context
       predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)

   # get the predicted last token
   predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
   predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
   assert predicted_token == 'who'

OpenAI GPT-2
^^^^^^^^^^^^

249
Here is a quick-start example using ``GPT2Tokenizer``\ , ``GPT2Model`` and ``GPT2LMHeadModel`` class with OpenAI's pre-trained  model. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
250
251
252
253
254
255

First let's prepare a tokenized input with ``GPT2Tokenizer``

.. code-block:: python

   import torch
256
   from pytorch_transformers import GPT2Tokenizer, GPT2Model, GPT2LMHeadModel
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

   # OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
   import logging
   logging.basicConfig(level=logging.INFO)

   # Load pre-trained model tokenizer (vocabulary)
   tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

   # Encode some inputs
   text_1 = "Who was Jim Henson ?"
   text_2 = "Jim Henson was a puppeteer"
   indexed_tokens_1 = tokenizer.encode(text_1)
   indexed_tokens_2 = tokenizer.encode(text_2)

   # Convert inputs to PyTorch tensors
   tokens_tensor_1 = torch.tensor([indexed_tokens_1])
   tokens_tensor_2 = torch.tensor([indexed_tokens_2])

Let's see how to use ``GPT2Model`` to get hidden states

.. code-block:: python

   # Load pre-trained model (weights)
   model = GPT2Model.from_pretrained('gpt2')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor_1 = tokens_tensor_1.to('cuda')
   tokens_tensor_2 = tokens_tensor_2.to('cuda')
   model.to('cuda')

   # Predict hidden states features for each layer
   with torch.no_grad():
       hidden_states_1, past = model(tokens_tensor_1)
       # past can be used to reuse precomputed hidden state in a subsequent predictions
       # (see beam-search examples in the run_gpt2.py example).
       hidden_states_2, past = model(tokens_tensor_2, past=past)

And how to use ``GPT2LMHeadModel``

.. code-block:: python

   # Load pre-trained model (weights)
   model = GPT2LMHeadModel.from_pretrained('gpt2')
   model.eval()

   # If you have a GPU, put everything on cuda
   tokens_tensor_1 = tokens_tensor_1.to('cuda')
   tokens_tensor_2 = tokens_tensor_2.to('cuda')
   model.to('cuda')

   # Predict all tokens
   with torch.no_grad():
       predictions_1, past = model(tokens_tensor_1)
       # past can be used to reuse precomputed hidden state in a subsequent predictions
       # (see beam-search examples in the run_gpt2.py example).
       predictions_2, past = model(tokens_tensor_2, past=past)

   # get the predicted last token
   predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
   predicted_token = tokenizer.decode([predicted_index])

And how to use ``GPT2DoubleHeadsModel``

.. code-block:: python

   # Load pre-trained model (weights)
   model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
   model.eval()

   #  Prepare tokenized input
   text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
   text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
   tokenized_text1 = tokenizer.tokenize(text1)
   tokenized_text2 = tokenizer.tokenize(text2)
   indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
   indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
   tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
   mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])

   # Predict hidden states features for each layer
   with torch.no_grad():
       lm_logits, multiple_choice_logits, past = model(tokens_tensor, mc_token_ids)