test_modeling_flax_mistral.py 10 KB
Newer Older
Kian Sierra McGettigan's avatar
Kian Sierra McGettigan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers import MistralConfig, is_flax_available, is_tokenizers_available
from transformers.testing_utils import require_flax, slow

from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor


if is_flax_available():
    import jax.numpy as jnp

    from transformers.models.mistral.modeling_flax_mistral import (
        FlaxMistralForCausalLM,
        FlaxMistralModel,
    )


if is_tokenizers_available():
    from transformers import LlamaTokenizerFast


class FlaxMistralModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_key_value_heads=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        window_size=7,
        initializer_range=0.02,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.window_size = window_size
        self.initializer_range = initializer_range
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = np.tril(np.ones((self.batch_size, self.seq_length)))

        config = MistralConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_key_value_heads=self.num_key_value_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            use_cache=True,
            is_decoder=False,
            initializer_range=self.initializer_range,
            sliding_window=self.window_size,
        )
        config.pad_token_id = config.eos_token_id

        return (config, input_ids, input_mask)

    # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.prepare_config_and_inputs_for_common
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
        return config, inputs_dict

    # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward
    def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask):
        max_decoder_length = 20
        model = model_class_name(config)

        past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
        attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4")

        position_ids = jnp.broadcast_to(
            jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
        )
        outputs_cache = model(
            input_ids[:, :-1],
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )

        position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
        outputs_cache_next = model(
            input_ids[:, -1:],
            attention_mask=attention_mask,
            past_key_values=outputs_cache.past_key_values,
            position_ids=position_ids,
        )

        outputs = model(input_ids)

        diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
        self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")

    # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward_with_attn_mask
    def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask):
        max_decoder_length = 20
        model = model_class_name(config)

        attention_mask_cache = jnp.concatenate(
            [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))],
            axis=-1,
        )

        past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
        position_ids = jnp.broadcast_to(
            jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
        )

        outputs_cache = model(
            input_ids[:, :-1],
            attention_mask=attention_mask_cache,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )
        position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
        outputs_cache_next = model(
            input_ids[:, -1:],
            past_key_values=outputs_cache.past_key_values,
            attention_mask=attention_mask_cache,
            position_ids=position_ids,
        )

        outputs = model(input_ids, attention_mask=attention_mask)

        diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
        self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")


@require_flax
class FlaxMistralModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
    all_model_classes = (FlaxMistralModel, FlaxMistralForCausalLM) if is_flax_available() else ()
    all_generative_model_classes = (FlaxMistralForCausalLM,) if is_flax_available() else ()

    def setUp(self):
        self.model_tester = FlaxMistralModelTester(self)

    def test_use_cache_forward(self):
        for model_class_name in self.all_model_classes:
            config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
            self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask)

    def test_use_cache_forward_with_attn_mask(self):
        for model_class_name in self.all_model_classes:
            config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
            self.model_tester.check_use_cache_forward_with_attn_mask(
                model_class_name, config, input_ids, attention_mask
            )

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("mistralai/Mistral-7B-v0.1", from_pt=True)
            outputs = model(np.ones((1, 1)))
            self.assertIsNotNone(outputs)


@slow
@require_flax
class FlaxMistralIntegrationTest(unittest.TestCase):
    def setUp(self):
        self.model_id = "mistralai/Mistral-7B-v0.1"
        self.model = FlaxMistralForCausalLM.from_pretrained(self.model_id, from_pt=True)
        self.test_batch = jnp.arange(32).reshape(4, 8) + 1911

    def test_model_logits(self):
        input_ids = jnp.array([[1, 306, 4658, 278, 6593, 310, 2834, 338]])
        EXPECTED_MEAN = np.array([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]])
        EXPECTED_SLICE = np.array([-5.8781,-5.8616,-0.1052,-4.7200,-5.8781,-5.8774,-5.8773,-5.8777,-5.8781,-5.8780,-5.8781,-5.8779,-1.0787,1.7583,-5.8779,-5.8780,-5.8783,-5.8778,-5.8776,-5.8781,-5.8784,-5.8778,-5.8778,-5.8777,-5.8779,-5.8778,-5.8776,-5.8780,-5.8779,-5.8781])  # fmt: skip

        flax_logits = self.model(input_ids).logits
        diff_mean = jnp.abs(flax_logits.mean(-1) - EXPECTED_MEAN).max()
        diff_slice = jnp.abs(flax_logits[0, 0, :30] - EXPECTED_SLICE).max()

        self.assertAlmostEqual(diff_mean, 0, places=3)
        self.assertAlmostEqual(diff_slice, 0, places=3)

    def test_generated_text(self):
        tokenizer = LlamaTokenizerFast.from_pretrained(self.model_id)
        tokenizer.pad_token_id = 2
        EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I鈥檓 not a big"""
        prompt = "My favourite condiment is "
        inputs = tokenizer(prompt, return_tensors="np", truncation=True, padding=True)
        generated_ids = self.model.generate(**inputs, max_new_tokens=20, temperature=0).sequences
        generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        self.assertEqual(generated_text, EXPECTED_TEXT_COMPLETION)