utils_multiple_choice.py 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension  """
17
18
19
20
21
22
23
24
25
26
27
28

from __future__ import absolute_import, division, print_function


import logging
import os
import sys
from io import open
import json
import csv
import glob
import tqdm
29
30
from typing import List
from transformers import PreTrainedTokenizer
31
32
33
34
35
36
37
38


logger = logging.getLogger(__name__)


class InputExample(object):
    """A single training/test example for multiple choice"""

39
    def __init__(self, example_id, question, contexts, endings, label=None):
40
41
42
        """Constructs a InputExample.

        Args:
erenup's avatar
erenup committed
43
44
            example_id: Unique id for the example.
            contexts: list of str. The untokenized text of the first sequence (context of corresponding question).
45
            question: string. The untokenized text of the second sequence (question).
erenup's avatar
erenup committed
46
            endings: list of str. multiple choice's options. Its length must be equal to contexts' length.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.example_id = example_id
        self.question = question
        self.contexts = contexts
        self.endings = endings
        self.label = label


class InputFeatures(object):
    def __init__(self,
                 example_id,
                 choices_features,
                 label

    ):
        self.example_id = example_id
        self.choices_features = [
            {
                'input_ids': input_ids,
                'input_mask': input_mask,
                'segment_ids': segment_ids
            }
71
            for input_ids, input_mask, segment_ids in choices_features
72
73
74
75
76
        ]
        self.label = label


class DataProcessor(object):
erenup's avatar
erenup committed
77
    """Base class for data converters for multiple choice data sets."""
78
79
80
81
82
83
84
85
86

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

erenup's avatar
erenup committed
87
    def get_test_examples(self, data_dir):
erenup's avatar
erenup committed
88
        """Gets a collection of `InputExample`s for the test set."""
erenup's avatar
erenup committed
89
90
        raise NotImplementedError()

91
92
93
94
95
96
    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()


class RaceProcessor(DataProcessor):
erenup's avatar
erenup committed
97
    """Processor for the RACE data set."""
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        high = os.path.join(data_dir, 'train/high')
        middle = os.path.join(data_dir, 'train/middle')
        high = self._read_txt(high)
        middle = self._read_txt(middle)
        return self._create_examples(high + middle, 'train')

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        high = os.path.join(data_dir, 'dev/high')
        middle = os.path.join(data_dir, 'dev/middle')
        high = self._read_txt(high)
        middle = self._read_txt(middle)
        return self._create_examples(high + middle, 'dev')

erenup's avatar
erenup committed
117
118
119
120
121
122
123
124
125
    def get_test_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} test".format(data_dir))
        high = os.path.join(data_dir, 'test/high')
        middle = os.path.join(data_dir, 'test/middle')
        high = self._read_txt(high)
        middle = self._read_txt(middle)
        return self._create_examples(high + middle, 'test')

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_txt(self, input_dir):
        lines = []
        files = glob.glob(input_dir + "/*txt")
        for file in tqdm.tqdm(files, desc="read files"):
            with open(file, 'r', encoding='utf-8') as fin:
                data_raw = json.load(fin)
                data_raw["race_id"] = file
                lines.append(data_raw)
        return lines


    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (_, data_raw) in enumerate(lines):
            race_id = "%s-%s" % (set_type, data_raw["race_id"])
            article = data_raw["article"]
            for i in range(len(data_raw["answers"])):
                truth = str(ord(data_raw['answers'][i]) - ord('A'))
                question = data_raw['questions'][i]
                options = data_raw['options'][i]

                examples.append(
                    InputExample(
                        example_id=race_id,
                        question=question,
erenup's avatar
erenup committed
156
                        contexts=[article, article, article, article], # this is not efficient but convenient
157
158
159
160
161
                        endings=[options[0], options[1], options[2], options[3]],
                        label=truth))
        return examples

class SwagProcessor(DataProcessor):
erenup's avatar
erenup committed
162
    """Processor for the SWAG data set."""
163
164
165
166
167
168
169
170
171
172
173

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")

erenup's avatar
erenup committed
174
175
    def get_test_examples(self, data_dir):
        """See base class."""
erenup's avatar
erenup committed
176
177
178
179
180
        logger.info("LOOKING AT {} dev".format(data_dir))
        raise ValueError(
            "For swag testing, the input file does not contain a label column. It can not be tested in current code"
            "setting!"
        )
erenup's avatar
erenup committed
181
        return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test")
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_csv(self, input_file):
        with open(input_file, 'r', encoding='utf-8') as f:
            reader = csv.reader(f)
            lines = []
            for line in reader:
                if sys.version_info[0] == 2:
                    line = list(unicode(cell, 'utf-8') for cell in line)
                lines.append(line)
            return lines


197
    def _create_examples(self, lines: List[List[str]], type: str):
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        """Creates examples for the training and dev sets."""
        if type == "train" and lines[0][-1] != 'label':
            raise ValueError(
                "For training, the input file must contain a label column."
            )

        examples = [
            InputExample(
                example_id=line[2],
                question=line[5],  # in the swag dataset, the
                # common beginning of each
                # choice is stored in "sent2".
                contexts = [line[4], line[4], line[4], line[4]],
                endings = [line[7], line[8], line[9], line[10]],
                label=line[11]
            ) for line in lines[1:]  # we skip the line with the column names
        ]

        return examples


class ArcProcessor(DataProcessor):
erenup's avatar
erenup committed
220
    """Processor for the ARC data set (request from allennlp)."""
221
222
223
224
225
226
227
228
229
230
231

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")

erenup's avatar
erenup committed
232
233
234
235
    def get_test_examples(self, data_dir):
        logger.info("LOOKING AT {} test".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")

236
237
238
239
240
241
242
243
244
245
246
247
248
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_json(self, input_file):
        with open(input_file, 'r', encoding='utf-8') as fin:
            lines = fin.readlines()
            return lines


    def _create_examples(self, lines, type):
        """Creates examples for the training and dev sets."""

erenup's avatar
erenup committed
249
        #There are two types of labels. They should be normalized
250
251
252
253
254
255
        def normalize(truth):
            if truth in "ABCD":
                return ord(truth) - ord("A")
            elif truth in "1234":
                return int(truth) - 1
            else:
erenup's avatar
erenup committed
256
257
                logger.info("truth ERROR! %s", str(truth))
                return None
erenup's avatar
erenup committed
258

259
260
261
262
263
        examples = []
        three_choice = 0
        four_choice = 0
        five_choice = 0
        other_choices = 0
erenup's avatar
erenup committed
264
        # we deleted example which has more than or less than four choices
265
266
267
268
269
270
271
272
273
274
275
276
277
        for line in tqdm.tqdm(lines, desc="read arc data"):
            data_raw = json.loads(line.strip("\n"))
            if len(data_raw["question"]["choices"]) == 3:
                three_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) == 5:
                five_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) != 4:
                other_choices += 1
                continue
            four_choice += 1
            truth = str(normalize(data_raw["answerKey"]))
erenup's avatar
erenup committed
278
            assert truth != "None"
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            question_choices = data_raw["question"]
            question = question_choices["stem"]
            id = data_raw["id"]
            options = question_choices["choices"]
            if len(options) == 4:
                examples.append(
                    InputExample(
                        example_id = id,
                        question=question,
                        contexts=[options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""),
                                  options[2]["para"].replace("_", ""), options[3]["para"].replace("_", "")],
                        endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]],
                        label=truth))

        if type == "train":
            assert len(examples) > 1
            assert examples[0].label is not None
        logger.info("len examples: %s}", str(len(examples)))
        logger.info("Three choices: %s", str(three_choice))
        logger.info("Five choices: %s", str(five_choice))
        logger.info("Other choices: %s", str(other_choices))
        logger.info("four choices: %s", str(four_choice))

        return examples


305
306
307
308
309
310
311
312
313
314
315
316
def convert_examples_to_features(
    examples: List[InputExample],
    label_list: List[str],
    max_length: int,
    tokenizer: PreTrainedTokenizer,
    pad_token_segment_id=0,
    pad_on_left=False,
    pad_token=0,
    mask_padding_with_zero=True,
) -> List[InputFeatures]:
    """
    Loads a data file into a list of `InputFeatures`
317
318
319
320
321
322
323
324
325
326
    """

    label_map = {label : i for i, label in enumerate(label_list)}

    features = []
    for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))
        choices_features = []
        for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
327
            text_a = context
328
            if example.question.find("_") != -1:
329
330
                # this is for cloze question
                text_b = example.question.replace("_", ending)
331
            else:
332
333
334
335
336
337
338
339
340
341
342
343
344
                text_b = example.question + " " + ending

            inputs = tokenizer.encode_plus(
                text_a,
                text_b,
                add_special_tokens=True,
                max_length=max_length,
                truncate_both_sequences=True
            )
            if 'overflowing_tokens' in inputs and len(inputs['overflowing_tokens']) > 0:
                logger.info('Attention! you are cropping tokens (swag task is ok). '
                        'If you are training ARC and RACE and you are poping question + options,'
                        'you need to try to use a bigger max seq length!')
345

346
            input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
347
348
349

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
350
            attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
351
352

            # Zero-pad up to the sequence length.
353
            padding_length = max_length - len(input_ids)
354
355
            if pad_on_left:
                input_ids = ([pad_token] * padding_length) + input_ids
356
357
                attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
                token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids
358
359
            else:
                input_ids = input_ids + ([pad_token] * padding_length)
360
361
362
363
364
365
366
367
                attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
                token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)

            assert len(input_ids) == max_length
            assert len(attention_mask) == max_length
            assert len(token_type_ids) == max_length
            choices_features.append((input_ids, attention_mask, token_type_ids))

368
369
370
371
372
373

        label = label_map[example.label]

        if ex_index < 2:
            logger.info("*** Example ***")
            logger.info("race_id: {}".format(example.example_id))
374
            for choice_idx, (input_ids, attention_mask, token_type_ids) in enumerate(choices_features):
375
376
                logger.info("choice: {}".format(choice_idx))
                logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
377
378
                logger.info("attention_mask: {}".format(' '.join(map(str, attention_mask))))
                logger.info("token_type_ids: {}".format(' '.join(map(str, token_type_ids))))
379
380
381
382
                logger.info("label: {}".format(label))

        features.append(
            InputFeatures(
383
384
385
                example_id=example.example_id,
                choices_features=choices_features,
                label=label,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            )
        )

    return features




processors = {
    "race": RaceProcessor,
    "swag": SwagProcessor,
    "arc": ArcProcessor
}


401
MULTIPLE_CHOICE_TASKS_NUM_LABELS = {
402
403
404
405
    "race", 4,
    "swag", 4,
    "arc", 4
}