"vscode:/vscode.git/clone" did not exist on "e6cb8e052a74313c2b2440c43df26303d379df71"
test_image_processing_common.py 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import inspect
17
18
import json
import os
19
import pathlib
20
21
import tempfile

amyeroberts's avatar
amyeroberts committed
22
23
24
import requests

from transformers import AutoImageProcessor, BatchFeature
25
from transformers.image_utils import AnnotationFormat, AnnotionFormat
26
27
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
28
29
30
31
32
33
34
35
36
37


if is_torch_available():
    import numpy as np
    import torch

if is_vision_available():
    from PIL import Image


38
39
40
41
42
43
44
45
46
47
def prepare_image_inputs(
    batch_size,
    min_resolution,
    max_resolution,
    num_channels,
    size_divisor=None,
    equal_resolution=False,
    numpify=False,
    torchify=False,
):
48
49
50
51
52
53
54
55
56
    """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
    or a list of PyTorch tensors if one specifies torchify=True.

    One can specify whether the images are of the same resolution or not.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    image_inputs = []
57
    for i in range(batch_size):
58
        if equal_resolution:
59
            width = height = max_resolution
60
61
        else:
            # To avoid getting image width/height 0
62
            if size_divisor is not None:
63
                # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
64
65
66
                min_resolution = max(size_divisor, min_resolution)
            width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
        image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
67
68
69
70
71
72
73
74
75
76
77

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]

    if torchify:
        image_inputs = [torch.from_numpy(image) for image in image_inputs]

    return image_inputs


78
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False):
79
80
81
    """This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""

    video = []
82
83
    for i in range(num_frames):
        video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
84
85
86
87
88
89
90
91
92
93
94

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]

    if torchify:
        video = [torch.from_numpy(frame) for frame in video]

    return video


95
96
97
98
99
100
101
102
103
104
def prepare_video_inputs(
    batch_size,
    num_frames,
    num_channels,
    min_resolution,
    max_resolution,
    equal_resolution=False,
    numpify=False,
    torchify=False,
):
105
106
107
108
109
110
111
112
113
    """This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
    one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.

    One can specify whether the videos are of the same resolution or not.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    video_inputs = []
114
    for i in range(batch_size):
115
        if equal_resolution:
116
            width = height = max_resolution
117
        else:
118
            width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
119
            video = prepare_video(
120
121
                num_frames=num_frames,
                num_channels=num_channels,
122
123
124
125
126
127
128
129
130
131
                width=width,
                height=height,
                numpify=numpify,
                torchify=torchify,
            )
        video_inputs.append(video)

    return video_inputs


132
class ImageProcessingTestMixin:
133
    test_cast_dtype = None
amyeroberts's avatar
amyeroberts committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    image_processing_class = None
    fast_image_processing_class = None
    image_processors_list = None
    test_slow_image_processor = True
    test_fast_image_processor = True

    def setUp(self):
        image_processor_list = []

        if self.test_slow_image_processor and self.image_processing_class:
            image_processor_list.append(self.image_processing_class)

        if self.test_fast_image_processor and self.fast_image_processing_class:
            image_processor_list.append(self.fast_image_processing_class)

        self.image_processor_list = image_processor_list

    @require_vision
    @require_torch
    def test_slow_fast_equivalence(self):
        dummy_image = Image.open(
            requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
        )

        if not self.test_slow_image_processor or not self.test_fast_image_processor:
            self.skipTest("Skipping slow/fast equivalence test")

        if self.image_processing_class is None or self.fast_image_processing_class is None:
            self.skipTest("Skipping slow/fast equivalence test as one of the image processors is not defined")

        image_processor_slow = self.image_processing_class(**self.image_processor_dict)
        image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)

        encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
        encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")

        self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-3))

    @require_vision
    @require_torch
    def test_fast_is_faster_than_slow(self):
        import time

        def measure_time(self, image_processor, dummy_image):
            start = time.time()
            _ = image_processor(dummy_image, return_tensors="pt")
            return time.time() - start

        dummy_image = Image.open(
            requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
        )

        if not self.test_slow_image_processor or not self.test_fast_image_processor:
            self.skipTest("Skipping speed test")

        if self.image_processing_class is None or self.fast_image_processing_class is None:
            self.skipTest("Skipping speed test as one of the image processors is not defined")

        image_processor_slow = self.image_processing_class(**self.image_processor_dict)
        image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)

        slow_time = self.measure_time(image_processor_slow, dummy_image)
        fast_time = self.measure_time(image_processor_fast, dummy_image)

        self.assertLessEqual(fast_time, slow_time)
199
200

    def test_image_processor_to_json_string(self):
amyeroberts's avatar
amyeroberts committed
201
202
203
204
205
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class(**self.image_processor_dict)
            obj = json.loads(image_processor.to_json_string())
            for key, value in self.image_processor_dict.items():
                self.assertEqual(obj[key], value)
206
207

    def test_image_processor_to_json_file(self):
amyeroberts's avatar
amyeroberts committed
208
209
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)
210

amyeroberts's avatar
amyeroberts committed
211
212
213
214
            with tempfile.TemporaryDirectory() as tmpdirname:
                json_file_path = os.path.join(tmpdirname, "image_processor.json")
                image_processor_first.to_json_file(json_file_path)
                image_processor_second = image_processing_class.from_json_file(json_file_path)
215

amyeroberts's avatar
amyeroberts committed
216
            self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
217
218

    def test_image_processor_from_and_save_pretrained(self):
amyeroberts's avatar
amyeroberts committed
219
220
221
222
223
224
225
226
227
228
229
230
231
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)
                image_processor_second = image_processing_class.from_pretrained(tmpdirname)

            self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())

    def test_image_processor_save_load_with_autoimageprocessor(self):
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)
232

amyeroberts's avatar
amyeroberts committed
233
234
235
            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)
236

amyeroberts's avatar
amyeroberts committed
237
238
239
                image_processor_second = AutoImageProcessor.from_pretrained(tmpdirname)

            self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
240
241

    def test_init_without_params(self):
amyeroberts's avatar
amyeroberts committed
242
243
244
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class()
            self.assertIsNotNone(image_processor)
245
246
247
248

    @require_torch
    @require_vision
    def test_cast_dtype_device(self):
amyeroberts's avatar
amyeroberts committed
249
250
251
252
        for image_processing_class in self.image_processor_list:
            if self.test_cast_dtype is not None:
                # Initialize image_processor
                image_processor = image_processing_class(**self.image_processor_dict)
253

amyeroberts's avatar
amyeroberts committed
254
255
                # create random PyTorch tensors
                image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
256

amyeroberts's avatar
amyeroberts committed
257
258
259
260
                encoding = image_processor(image_inputs, return_tensors="pt")
                # for layoutLM compatiblity
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.float32)
261

amyeroberts's avatar
amyeroberts committed
262
263
264
                encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.float16)
265

amyeroberts's avatar
amyeroberts committed
266
267
268
                encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
269

amyeroberts's avatar
amyeroberts committed
270
271
                with self.assertRaises(TypeError):
                    _ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
272

amyeroberts's avatar
amyeroberts committed
273
274
275
276
                # Try with text + image feature
                encoding = image_processor(image_inputs, return_tensors="pt")
                encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
                encoding = encoding.to(torch.float16)
277

amyeroberts's avatar
amyeroberts committed
278
279
280
                self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
                self.assertEqual(encoding.pixel_values.dtype, torch.float16)
                self.assertEqual(encoding.input_ids.dtype, torch.long)
281
282

    def test_call_pil(self):
amyeroberts's avatar
amyeroberts committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = image_processing_class(**self.image_processor_dict)
            # create random PIL images
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
            for image in image_inputs:
                self.assertIsInstance(image, Image.Image)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
302
303

    def test_call_numpy(self):
amyeroberts's avatar
amyeroberts committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = image_processing_class(**self.image_processor_dict)
            # create random numpy tensors
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
            for image in image_inputs:
                self.assertIsInstance(image, np.ndarray)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
323
324

    def test_call_pytorch(self):
amyeroberts's avatar
amyeroberts committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        for image_processing_class in self.image_processor_list:
            # Initialize image_processing
            image_processing = image_processing_class(**self.image_processor_dict)
            # create random PyTorch tensors
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

            for image in image_inputs:
                self.assertIsInstance(image, torch.Tensor)

            # Test not batched input
            encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
            self.assertEqual(
                tuple(encoded_images.shape),
                (self.image_processor_tester.batch_size, *expected_output_image_shape),
            )
amyeroberts's avatar
amyeroberts committed
346
347

    def test_call_numpy_4_channels(self):
amyeroberts's avatar
amyeroberts committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        for image_processing_class in self.image_processor_list:
            # Test that can process images which have an arbitrary number of channels
            # Initialize image_processing
            image_processor = image_processing_class(**self.image_processor_dict)

            # create random numpy tensors
            self.image_processor_tester.num_channels = 4
            image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)

            # Test not batched input
            encoded_images = image_processor(
                image_inputs[0],
                return_tensors="pt",
                input_data_format="channels_first",
                image_mean=0,
                image_std=1,
            ).pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
            self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

            # Test batched
            encoded_images = image_processor(
                image_inputs,
                return_tensors="pt",
                input_data_format="channels_first",
                image_mean=0,
                image_std=1,
            ).pixel_values
            expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
            self.assertEqual(
                tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
            )
380

381
    def test_image_processor_preprocess_arguments(self):
amyeroberts's avatar
amyeroberts committed
382
383
384
385
386
387
388
389
390
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class(**self.image_processor_dict)
            if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"):
                preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args
                preprocess_parameter_names.remove("self")
                preprocess_parameter_names.sort()
                valid_processor_keys = image_processor._valid_processor_keys
                valid_processor_keys.sort()
                self.assertEqual(preprocess_parameter_names, valid_processor_keys)
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

class AnnotationFormatTestMixin:
    # this mixin adds a test to assert that usages of the
    # to-be-deprecated `AnnotionFormat` continue to be
    # supported for the time being

    def test_processor_can_use_legacy_annotation_format(self):
        image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
        fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO"

        with open(fixtures_path / "coco_annotations.txt", "r") as f:
            detection_target = json.loads(f.read())

        detection_annotations = {"image_id": 39769, "annotations": detection_target}

        detection_params = {
            "images": Image.open(fixtures_path / "000000039769.png"),
            "annotations": detection_annotations,
            "return_tensors": "pt",
        }

        with open(fixtures_path / "coco_panoptic_annotations.txt", "r") as f:
            panoptic_target = json.loads(f.read())

        panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target}

        masks_path = pathlib.Path(fixtures_path / "coco_panoptic")

        panoptic_params = {
            "images": Image.open(fixtures_path / "000000039769.png"),
            "annotations": panoptic_annotations,
            "return_tensors": "pt",
            "masks_path": masks_path,
        }

        test_cases = [
            ("coco_detection", detection_params),
            ("coco_panoptic", panoptic_params),
            (AnnotionFormat.COCO_DETECTION, detection_params),
            (AnnotionFormat.COCO_PANOPTIC, panoptic_params),
            (AnnotationFormat.COCO_DETECTION, detection_params),
            (AnnotationFormat.COCO_PANOPTIC, panoptic_params),
        ]

        def _compare(a, b) -> None:
            if isinstance(a, (dict, BatchFeature)):
                self.assertEqual(a.keys(), b.keys())
                for k, v in a.items():
                    _compare(v, b[k])
            elif isinstance(a, list):
                self.assertEqual(len(a), len(b))
                for idx in range(len(a)):
                    _compare(a[idx], b[idx])
            elif isinstance(a, torch.Tensor):
                self.assertTrue(torch.allclose(a, b, atol=1e-3))
            elif isinstance(a, str):
                self.assertEqual(a, b)

        for annotation_format, params in test_cases:
            with self.subTest(annotation_format):
                image_processor_params = {**image_processor_dict, **{"format": annotation_format}}
                image_processor_first = self.image_processing_class(**image_processor_params)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    image_processor_first.save_pretrained(tmpdirname)
                    image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)

                # check the 'format' key exists and that the dicts of the
                # first and second processors are equal
                self.assertIn("format", image_processor_first.to_dict().keys())
                self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())

                # perform encoding using both processors and compare
                # the resulting BatchFeatures
                first_encoding = image_processor_first(**params)
                second_encoding = image_processor_second(**params)
                _compare(first_encoding, second_encoding)