"tests/models/distilbert/test_modeling_distilbert.py" did not exist on "783a61699962f4b058688db21d417e1932423417"
test_image_processing_vivit.py 9.83 KB
Newer Older
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import VivitImageProcessor


class VivitImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        num_frames=10,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
        crop_size=None,
    ):
        size = size if size is not None else {"shortest_edge": 18}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}

        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_frames = num_frames
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.crop_size = crop_size

    def prepare_image_processor_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "crop_size": self.crop_size,
        }

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    def expected_output_image_shape(self, images):
        return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"]

    def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_video_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            num_frames=self.num_frames,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
95
96
97

@require_torch
@require_vision
98
class VivitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
99
100
101
    image_processing_class = VivitImageProcessor if is_vision_available() else None

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
102
        super().setUp()
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        self.image_processor_tester = VivitImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "size"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 18})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})

127
128
129
130
131
132
133
134
135
136
137
138
139
140
    def test_rescale(self):
        # ViVit optionally rescales between -1 and 1 instead of the usual 0 and 1
        image = np.arange(0, 256, 1, dtype=np.uint8).reshape(1, 8, 32)

        image_processor = self.image_processing_class(**self.image_processor_dict)

        rescaled_image = image_processor.rescale(image, scale=1 / 127.5)
        expected_image = (image * (1 / 127.5)).astype(np.float32) - 1
        self.assertTrue(np.allclose(rescaled_image, expected_image))

        rescaled_image = image_processor.rescale(image, scale=1 / 255, offset=False)
        expected_image = (image / 255.0).astype(np.float32)
        self.assertTrue(np.allclose(rescaled_image, expected_image))

Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
141
142
143
144
    def test_call_pil(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL videos
145
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
146
147
148
149
150
151
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], Image.Image)

        # Test not batched input
        encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
152
153
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
154
155
156

        # Test batched
        encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
157
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
158
        self.assertEqual(
159
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
160
161
162
163
164
165
        )

    def test_call_numpy(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
166
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
167
168
169
170
171
172
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], np.ndarray)

        # Test not batched input
        encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
173
174
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
175
176
177

        # Test batched
        encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
178
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
179
        self.assertEqual(
180
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
181
182
        )

amyeroberts's avatar
amyeroberts committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processor_tester.num_channels = 4
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], np.ndarray)

        # Test not batched input
        encoded_videos = image_processing(
            video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
        ).pixel_values
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

        # Test batched
        encoded_videos = image_processing(
            video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
        ).pixel_values
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
        self.assertEqual(
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
        )
        self.image_processor_tester.num_channels = 3

Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
210
211
212
213
    def test_call_pytorch(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
214
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
215
216
217
218
219
220
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], torch.Tensor)

        # Test not batched input
        encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
221
222
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
223
224
225

        # Test batched
        encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
226
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
227
        self.assertEqual(
228
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
Jegor Kitškerkin's avatar
Jegor Kitškerkin committed
229
        )