test_image_processing_videomae.py 9.17 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import VideoMAEImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class VideoMAEImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
46
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        num_frames=10,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
47
        size=None,
NielsRogge's avatar
NielsRogge committed
48
49
50
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
amyeroberts's avatar
amyeroberts committed
51
        crop_size=None,
NielsRogge's avatar
NielsRogge committed
52
    ):
amyeroberts's avatar
amyeroberts committed
53
54
55
        size = size if size is not None else {"shortest_edge": 18}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}

NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
63
64
65
66
67
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_frames = num_frames
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
amyeroberts's avatar
amyeroberts committed
68
        self.crop_size = crop_size
NielsRogge's avatar
NielsRogge committed
69

70
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
71
72
73
74
75
76
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
amyeroberts's avatar
amyeroberts committed
77
            "crop_size": self.crop_size,
NielsRogge's avatar
NielsRogge committed
78
79
        }

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    def expected_output_image_shape(self, images):
        return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"]

    def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_video_inputs(
            batch_size=self.batch_size,
            num_frames=self.num_frames,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
95
96
97

@require_torch
@require_vision
98
class VideoMAEImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
99
    image_processing_class = VideoMAEImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
100
101

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
102
        super().setUp()
103
        self.image_processor_tester = VideoMAEImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
104
105

    @property
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "size"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 18})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
126

NielsRogge's avatar
NielsRogge committed
127
    def test_call_pil(self):
128
129
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
130
        # create random PIL videos
131
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
132
133
134
135
136
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], Image.Image)

        # Test not batched input
137
        encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
138
139
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
NielsRogge's avatar
NielsRogge committed
140
141

        # Test batched
142
        encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
143
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
NielsRogge's avatar
NielsRogge committed
144
        self.assertEqual(
145
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
NielsRogge's avatar
NielsRogge committed
146
147
148
        )

    def test_call_numpy(self):
149
150
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
151
        # create random numpy tensors
152
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
153
154
155
156
157
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], np.ndarray)

        # Test not batched input
158
        encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
159
160
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
NielsRogge's avatar
NielsRogge committed
161
162

        # Test batched
163
        encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
164
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
NielsRogge's avatar
NielsRogge committed
165
        self.assertEqual(
166
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
NielsRogge's avatar
NielsRogge committed
167
168
        )

amyeroberts's avatar
amyeroberts committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processor_tester.num_channels = 4
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], np.ndarray)

        # Test not batched input
        encoded_videos = image_processing(
            video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
        ).pixel_values
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))

        # Test batched
        encoded_videos = image_processing(
            video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
        ).pixel_values
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
        self.assertEqual(
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
        )
        self.image_processor_tester.num_channels = 3

NielsRogge's avatar
NielsRogge committed
196
    def test_call_pytorch(self):
197
198
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
199
        # create random PyTorch tensors
200
        video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
201
202
203
204
205
        for video in video_inputs:
            self.assertIsInstance(video, list)
            self.assertIsInstance(video[0], torch.Tensor)

        # Test not batched input
206
        encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
207
208
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
        self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
NielsRogge's avatar
NielsRogge committed
209
210

        # Test batched
211
        encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
212
        expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
NielsRogge's avatar
NielsRogge committed
213
        self.assertEqual(
214
            tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
NielsRogge's avatar
NielsRogge committed
215
        )