test_image_processing_swin2sr.py 7.23 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import Swin2SRImageProcessor
    from transformers.image_transforms import get_image_size


class Swin2SRImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
        pad_size=8,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.pad_size = pad_size

62
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
63
64
65
66
67
68
69
        return {
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
            "pad_size": self.pad_size,
        }

70
71
    def expected_output_image_shape(self, images):
        img = images[0]
NielsRogge's avatar
NielsRogge committed
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        if isinstance(img, Image.Image):
            input_width, input_height = img.size
        else:
            input_height, input_width = img.shape[-2:]

        pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height
        pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width

        return self.num_channels, input_height + pad_height, input_width + pad_width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )
NielsRogge's avatar
NielsRogge committed
93
94
95
96


@require_torch
@require_vision
97
class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
98
    image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
99
100

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
101
        super().setUp()
102
        self.image_processor_tester = Swin2SRImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
103
104

    @property
105
106
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
107

108
109
110
111
112
113
    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_rescale"))
        self.assertTrue(hasattr(image_processor, "rescale_factor"))
        self.assertTrue(hasattr(image_processor, "do_pad"))
        self.assertTrue(hasattr(image_processor, "pad_size"))
NielsRogge's avatar
NielsRogge committed
114
115
116

    def calculate_expected_size(self, image):
        old_height, old_width = get_image_size(image)
117
        size = self.image_processor_tester.pad_size
NielsRogge's avatar
NielsRogge committed
118
119
120
121
122

        pad_height = (old_height // size + 1) * size - old_height
        pad_width = (old_width // size + 1) * size - old_width
        return old_height + pad_height, old_width + pad_width

123
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
124
    def test_call_pil(self):
125
126
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
127
        # create random PIL images
128
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
129
130
131
132
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
133
134
135
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
136

137
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
138
    def test_call_numpy(self):
139
140
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
141
        # create random numpy tensors
142
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
143
144
145
146
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
147
148
149
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
150

amyeroberts's avatar
amyeroberts committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    # Swin2SRImageProcessor does not support batched input
    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processor_tester.num_channels = 4
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = image_processing(
            image_inputs[0], return_tensors="pt", input_data_format="channels_first"
        ).pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
        self.image_processor_tester.num_channels = 3

169
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
170
    def test_call_pytorch(self):
171
172
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
173
        # create random PyTorch tensors
174
175
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

NielsRogge's avatar
NielsRogge committed
176
177
178
179
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
180
181
182
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))