test_image_processing_superpoint.py 4.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available

from ...test_image_processing_common import (
    ImageProcessingTestMixin,
    prepare_image_inputs,
)


if is_vision_available():
    from transformers import SuperPointImageProcessor


class SuperPointImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
    ):
        size = size if size is not None else {"height": 480, "width": 640}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size

    def prepare_image_processor_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
        }

    def expected_output_image_shape(self, images):
        return self.num_channels, self.size["height"], self.size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class SuperPointImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = SuperPointImageProcessor if is_vision_available() else None

    def setUp(self) -> None:
amyeroberts's avatar
amyeroberts committed
80
        super().setUp()
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        self.image_processor_tester = SuperPointImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processing(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 480, "width": 640})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size={"height": 42, "width": 42}
        )
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})

    @unittest.skip(reason="SuperPointImageProcessor is always supposed to return a grayscaled image")
    def test_call_numpy_4_channels(self):
        pass

    def test_input_image_properly_converted_to_grayscale(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        image_inputs = self.image_processor_tester.prepare_image_inputs()
        pre_processed_images = image_processor.preprocess(image_inputs)
        for image in pre_processed_images["pixel_values"]:
            self.assertTrue(np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]))