test_image_processing_flava.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
25
26
27
28
29
30


if is_torch_available():
    import torch

if is_vision_available():
amyeroberts's avatar
amyeroberts committed
31
    import PIL
32

33
    from transformers import FlavaImageProcessor
34
    from transformers.image_utils import PILImageResampling
amyeroberts's avatar
amyeroberts committed
35
    from transformers.models.flava.image_processing_flava import (
36
37
38
39
40
41
42
43
44
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )
else:
    FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None


45
class FlavaImageProcessingTester(unittest.TestCase):
46
47
48
49
50
51
52
53
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
54
        size=None,
55
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
56
        crop_size=None,
57
        resample=None,
amyeroberts's avatar
amyeroberts committed
58
59
        do_rescale=True,
        rescale_factor=1 / 255,
60
61
62
63
64
65
66
67
68
69
        do_normalize=True,
        image_mean=FLAVA_IMAGE_MEAN,
        image_std=FLAVA_IMAGE_STD,
        input_size_patches=14,
        total_mask_patches=75,
        mask_group_max_patches=None,
        mask_group_min_patches=16,
        mask_group_min_aspect_ratio=0.3,
        mask_group_max_aspect_ratio=None,
        codebook_do_resize=True,
amyeroberts's avatar
amyeroberts committed
70
        codebook_size=None,
71
72
        codebook_resample=None,
        codebook_do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
73
        codebook_crop_size=None,
74
75
76
77
78
        codebook_do_map_pixels=True,
        codebook_do_normalize=True,
        codebook_image_mean=FLAVA_CODEBOOK_MEAN,
        codebook_image_std=FLAVA_CODEBOOK_STD,
    ):
amyeroberts's avatar
amyeroberts committed
79
80
81
82
83
        size = size if size is not None else {"height": 224, "width": 224}
        crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
        codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
        codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}

84
85
86
87
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.do_resize = do_resize
amyeroberts's avatar
amyeroberts committed
88
89
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
90
91
92
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
93
        self.resample = resample if resample is not None else PILImageResampling.BICUBIC
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size

        self.input_size_patches = input_size_patches
        self.total_mask_patches = total_mask_patches
        self.mask_group_max_patches = mask_group_max_patches
        self.mask_group_min_patches = mask_group_min_patches
        self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
        self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio

        self.codebook_do_resize = codebook_do_resize
        self.codebook_size = codebook_size
109
        self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
110
111
112
113
114
115
116
        self.codebook_do_center_crop = codebook_do_center_crop
        self.codebook_crop_size = codebook_crop_size
        self.codebook_do_map_pixels = codebook_do_map_pixels
        self.codebook_do_normalize = codebook_do_normalize
        self.codebook_image_mean = codebook_image_mean
        self.codebook_image_std = codebook_image_std

117
    def prepare_image_processor_dict(self):
118
119
120
121
122
123
124
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "resample": self.resample,
amyeroberts's avatar
amyeroberts committed
125
126
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "input_size_patches": self.input_size_patches,
            "total_mask_patches": self.total_mask_patches,
            "mask_group_max_patches": self.mask_group_max_patches,
            "mask_group_min_patches": self.mask_group_min_patches,
            "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
            "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
            "codebook_do_resize": self.codebook_do_resize,
            "codebook_size": self.codebook_size,
            "codebook_resample": self.codebook_resample,
            "codebook_do_center_crop": self.codebook_do_center_crop,
            "codebook_crop_size": self.codebook_crop_size,
            "codebook_do_map_pixels": self.codebook_do_map_pixels,
            "codebook_do_normalize": self.codebook_do_normalize,
            "codebook_image_mean": self.codebook_image_mean,
            "codebook_image_std": self.codebook_image_std,
        }

    def get_expected_image_size(self):
amyeroberts's avatar
amyeroberts committed
147
        return (self.size["height"], self.size["width"])
148
149
150
151
152
153
154
155
156

    def get_expected_mask_size(self):
        return (
            (self.input_size_patches, self.input_size_patches)
            if not isinstance(self.input_size_patches, tuple)
            else self.input_size_patches
        )

    def get_expected_codebook_image_size(self):
amyeroberts's avatar
amyeroberts committed
157
        return (self.codebook_size["height"], self.codebook_size["width"])
158

159
160
161
162
163
164
165
166
167
168
169
    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

170
171
172

@require_torch
@require_vision
173
class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
174
    image_processing_class = FlavaImageProcessor if is_vision_available() else None
175
176
177
    maxDiff = None

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
178
        super().setUp()
179
        self.image_processor_tester = FlavaImageProcessingTester(self)
180
181

    @property
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "crop_size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "masking_generator"))
        self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
        self.assertTrue(hasattr(image_processing, "codebook_size"))
        self.assertTrue(hasattr(image_processing, "codebook_resample"))
        self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
        self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
        self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
        self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
        self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
        self.assertTrue(hasattr(image_processing, "codebook_image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
216
        )
217
218
219
220
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
221

222
    def test_call_pil(self):
223
224
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
225
        # create random PIL images
226
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
227
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
228
            self.assertIsInstance(image, PIL.Image.Image)
229
230

        # Test not batched input
231
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
232
233
234
235

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

236
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
237
238
239

        self.assertEqual(
            encoded_images.pixel_values.shape,
240
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
241
242
243
        )

        # Test batched
244
245
        encoded_images = image_processing(image_inputs, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
246
247
248
249
250
251
252

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
253
254
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
255
256
257
258
259
260
                expected_height,
                expected_width,
            ),
        )

    def _test_call_framework(self, instance_class, prepare_kwargs):
261
262
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
263
        # create random tensors
264
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs)
265
266
267
268
        for image in image_inputs:
            self.assertIsInstance(image, instance_class)

        # Test not batched input
269
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
270

271
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
272
273
        self.assertEqual(
            encoded_images.pixel_values.shape,
274
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
275
276
        )

277
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
278

279
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
280
281
282
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
283
284
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
285
286
287
288
289
                expected_height,
                expected_width,
            ),
        )

290
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
291
292
293
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
294
                self.image_processor_tester.batch_size,
295
296
297
298
299
300
                expected_height,
                expected_width,
            ),
        )

        # Test batched
301
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
302

303
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
304
305
306
        self.assertEqual(
            encoded_images.shape,
            (
307
308
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
309
310
311
312
313
314
                expected_height,
                expected_width,
            ),
        )

        # Test masking
315
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
316

317
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
318
319
320
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
321
322
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
323
324
325
326
327
                expected_height,
                expected_width,
            ),
        )

328
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
329
330
331
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
332
                self.image_processor_tester.batch_size,
333
334
335
336
337
338
339
340
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})

amyeroberts's avatar
amyeroberts committed
341
342
343
344
345
    def test_call_numpy_4_channels(self):
        self.image_processing_class.num_channels = 4
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
        self.image_processing_class.num_channels = 3

346
347
348
349
    def test_call_pytorch(self):
        self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})

    def test_masking(self):
350
        # Initialize image_processing
351
        random.seed(1234)
352
        image_processing = self.image_processing_class(**self.image_processor_dict)
353
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
354
355

        # Test not batched input
356
        encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
357
358
359
        self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)

    def test_codebook_pixels(self):
360
361
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
362
        # create random PIL images
363
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
364
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
365
            self.assertIsInstance(image, PIL.Image.Image)
366
367

        # Test not batched input
368
369
        encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
370
371
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
372
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
373
374
375
        )

        # Test batched
376
377
        encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
378
379
380
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (
381
382
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
383
384
385
386
                expected_height,
                expected_width,
            ),
        )