run_seq2seq.py 27.3 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Optional

28
import nltk  # Here to have a nice missing dependency error message early on
29
30
31
32
import numpy as np
from datasets import load_dataset, load_metric

import transformers
33
from filelock import FileLock
34
35
36
37
38
39
40
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    MBartTokenizer,
41
    MBartTokenizerFast,
42
43
44
45
46
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator,
    set_seed,
)
47
from transformers.trainer_utils import get_last_checkpoint, is_main_process
48
49


50
51
52
53
with FileLock(".lock") as lock:
    nltk.download("punkt", quiet=True)


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    task: str = field(
        default="summarization",
        metadata={
            "help": "The name of the task, should be summarization (or summarization_{dataset} for evaluating "
            "pegasus) or translation (or translation_{xx}_to_{yy})."
        },
    )
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
120
121
122
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
123
124
    validation_file: Optional[str] = field(
        default=None,
125
126
127
128
129
130
131
132
133
134
135
        metadata={
            "help": "An optional input evaluation data file to evaluate the metrics (rouge/sacreblue) on "
            "(a jsonlines or csv file)."
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
            "help": "An optional input test data file to evaluate the metrics (rouge/sacreblue) on "
            "(a jsonlines or csv file)."
        },
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
159
        default=None,
160
161
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
162
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
189
190
191
192
193
194
195
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
196
197
    source_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
198
199
200
201
202
203
204
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
205
206
207
208
209
210
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
211
212
213
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        if not self.task.startswith("summarization") and not self.task.startswith("translation"):
            raise ValueError(
                "`task` should be summarization, summarization_{dataset}, translation or translation_{xx}_to_{yy}."
            )
229
230
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
231
232
233


summarization_name_mapping = {
234
235
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
236
    "cnn_dailymail": ("article", "highlights"),
237
238
239
240
241
242
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
243
    "xsum": ("document", "summary"),
244
    "wiki_summary": ("article", "highlights"),
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

261
262
263
264
265
266
267
268
269
270
271
272
273
274
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
275
276
277
278
279

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
280
        handlers=[logging.StreamHandler(sys.stdout)],
281
    )
282
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files in the summarization task, this script will use the first column for the full texts and the
    # second column for the summaries (unless you specify column names for this with the `text_column` and
    # `summary_column` arguments).
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
320
321
322
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Set decoder_start_token_id
355
356
357
358
359
360
361
362
363
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        assert (
            data_args.target_lang is not None and data_args.source_lang is not None
        ), "mBart requires --target_lang and --source_lang"
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

364
365
366
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

367
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
368

369
370
371
372
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = datasets["train"].column_names
373
    elif training_args.do_eval:
374
        column_names = datasets["validation"].column_names
375
376
377
378
379
    elif training_args.do_predict:
        column_names = datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
380
381
382

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
383
    if data_args.task.startswith("translation") or isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        if data_args.source_lang is not None:
            tokenizer.src_lang = data_args.source_lang
        if data_args.target_lang is not None:
            tokenizer.tgt_lang = data_args.target_lang

    # To serialize preprocess_function below, each of those four variables needs to be defined (even if we won't use
    # them all).
    source_lang, target_lang, text_column, summary_column = None, None, None, None

    if data_args.task.startswith("summarization"):
        # Get the column names for input/target.
        dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
        if data_args.text_column is None:
            text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
        else:
            text_column = data_args.text_column
400
401
402
403
            if text_column not in column_names:
                raise ValueError(
                    f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
                )
404
405
406
407
        if data_args.summary_column is None:
            summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
        else:
            summary_column = data_args.summary_column
408
409
410
411
            if summary_column not in column_names:
                raise ValueError(
                    f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
                )
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    else:
        # Get the language codes for input/target.
        lang_search = re.match("translation_([a-z]+)_to_([a-z]+)", data_args.task)
        if data_args.source_lang is not None:
            source_lang = data_args.source_lang.split("_")[0]
        else:
            assert (
                lang_search is not None
            ), "Provide a source language via --source_lang or rename your task 'translation_xx_to_yy'."
            source_lang = lang_search.groups()[0]

        if data_args.target_lang is not None:
            target_lang = data_args.target_lang.split("_")[0]
        else:
            assert (
                lang_search is not None
            ), "Provide a target language via --target_lang or rename your task 'translation_xx_to_yy'."
            target_lang = lang_search.groups()[1]

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

435
436
437
438
439
440
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
        logger.warn(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

441
442
443
444
445
446
447
    def preprocess_function(examples):
        if data_args.task.startswith("translation"):
            inputs = [ex[source_lang] for ex in examples["translation"]]
            targets = [ex[target_lang] for ex in examples["translation"]]
        else:
            inputs = examples[text_column]
            targets = examples[summary_column]
448
        inputs = [prefix + inp for inp in inputs]
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        train_dataset = datasets["train"]
467
468
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
469
470
471
472
473
474
475
476
477
478
479
480
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
481
482
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
483
484
485
486
487
488
489
490
491
492
493
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

494
495
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
496
497
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
498
499
500
501
502
503
504
505
506
507
508
        test_dataset = datasets["test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

509
510
511
512
513
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
514
515
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
516
            model=model,
517
518
519
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
520
521
522
523
524

    # Metric
    metric_name = "rouge" if data_args.task.startswith("summarization") else "sacrebleu"
    metric = load_metric(metric_name)

525
526
527
528
529
530
531
532
533
534
535
536
537
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        if metric_name == "rouge":
            preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
            labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
        else:  # sacrebleu
            labels = [[label] for label in labels]

        return preds, labels

538
539
540
541
542
543
544
545
546
547
548
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
549
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
550
551

        if metric_name == "rouge":
552
553
            result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
            # Extract a few results from ROUGE
554
555
            result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
        else:
556
            result = metric.compute(predictions=decoded_preds, references=decoded_labels)
557
558
559
560
            result = {"bleu": result["score"]}

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
561
        result = {k: round(v, 4) for k, v in result.items()}
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
577
        if last_checkpoint is not None:
578
            checkpoint = last_checkpoint
579
        elif os.path.isdir(model_args.model_name_or_path):
580
            checkpoint = model_args.model_name_or_path
581
        else:
582
583
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
584
585
        trainer.save_model()  # Saves the tokenizer too for easy upload

586
587
588
589
590
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
591

592
593
594
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
595
596
597
598
599
600

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

601
        metrics = trainer.evaluate(
602
            max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
603
604
        )
        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
605
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
606

607
608
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
609

610
611
612
613
614
615
616
617
618
    if training_args.do_predict:
        logger.info("*** Test ***")

        test_results = trainer.predict(
            test_dataset,
            metric_key_prefix="test",
            max_length=data_args.val_max_target_length,
            num_beams=data_args.num_beams,
        )
619
620
621
        metrics = test_results.metrics
        max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len(test_dataset)
        metrics["test_samples"] = min(max_test_samples, len(test_dataset))
622

623
624
        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)
625

626
        if trainer.is_world_process_zero():
627
628
629
630
631
            if training_args.predict_with_generate:
                test_preds = tokenizer.batch_decode(
                    test_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
                test_preds = [pred.strip() for pred in test_preds]
632
                output_test_preds_file = os.path.join(training_args.output_dir, "test_generations.txt")
633
634
635
                with open(output_test_preds_file, "w") as writer:
                    writer.write("\n".join(test_preds))

636
637
638
639
640
641
642
643
644
645
    return results


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()