test_modeling_albert.py 14.1 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre's avatar
Lysandre committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

19
from transformers import AlbertConfig, is_torch_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
22

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Lysandre's avatar
Lysandre committed
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

Lysandre's avatar
Lysandre committed
28
if is_torch_available():
29
30
    import torch

31
    from transformers import (
32
        MODEL_FOR_PRETRAINING_MAPPING,
33
        AlbertForMaskedLM,
34
        AlbertForMultipleChoice,
35
36
        AlbertForPreTraining,
        AlbertForQuestionAnswering,
37
        AlbertForSequenceClassification,
38
        AlbertForTokenClassification,
39
        AlbertModel,
40
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
42
43


44
45
class AlbertModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
46
47
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
48
49
50
51
52
53
54
55
56
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        embedding_size=16,
        hidden_size=36,
57
58
59
        num_hidden_layers=2,
        # this needs to be the same as `num_hidden_layers`!
        num_hidden_groups=2,
Yih-Dar's avatar
Yih-Dar committed
60
61
62
63
64
65
66
67
68
69
70
71
        num_attention_heads=6,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
72
73
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.embedding_size = embedding_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_hidden_groups = num_hidden_groups
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
97
98
99
100
101
102

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
103
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
104
105
106
107
108
109
110
111
112
113
114
115
116

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

117
118
119
120
121
122
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return AlbertConfig(
123
124
125
126
127
128
129
130
131
132
133
134
135
136
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            num_hidden_groups=self.num_hidden_groups,
        )

137
    def create_and_check_model(
138
139
140
141
142
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
146
147
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
148

149
    def create_and_check_for_pretraining(
150
151
152
153
154
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(
156
157
158
159
160
161
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=token_labels,
            sentence_order_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
162
163
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels))
164

165
    def create_and_check_for_masked_lm(
166
167
168
169
170
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
171
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
172
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
173

174
    def create_and_check_for_question_answering(
175
176
177
178
179
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = AlbertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
180
        result = model(
181
182
183
184
185
186
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
187
188
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
189

190
    def create_and_check_for_sequence_classification(
191
192
193
194
195
196
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = AlbertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
197
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
198
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
199

200
    def create_and_check_for_token_classification(
201
202
203
204
205
206
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = AlbertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
208
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
209

210
    def create_and_check_for_multiple_choice(
211
212
213
214
215
216
217
218
219
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = AlbertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
220
        result = model(
221
222
223
224
225
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
226
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


243
@require_torch
244
class AlbertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
245
246
247
248
249
250
251
252
253
254
255
256
257
    all_model_classes = (
        (
            AlbertModel,
            AlbertForPreTraining,
            AlbertForMaskedLM,
            AlbertForMultipleChoice,
            AlbertForSequenceClassification,
            AlbertForTokenClassification,
            AlbertForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
258
259
260
261
262
263
264
265
266
267
268
269
    pipeline_model_mapping = (
        {
            "feature-extraction": AlbertModel,
            "fill-mask": AlbertForMaskedLM,
            "question-answering": AlbertForQuestionAnswering,
            "text-classification": AlbertForSequenceClassification,
            "token-classification": AlbertForTokenClassification,
            "zero-shot": AlbertForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
270
    fx_compatible = True
Lysandre's avatar
Lysandre committed
271

272
273
274
275
276
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
277
            if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
278
279
280
281
282
283
284
285
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["sentence_order_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

Lysandre's avatar
Lysandre committed
286
    def setUp(self):
287
        self.model_tester = AlbertModelTester(self)
Lysandre's avatar
Lysandre committed
288
289
290
291
292
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

293
    def test_model(self):
Lysandre's avatar
Lysandre committed
294
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
295
        self.model_tester.create_and_check_model(*config_and_inputs)
Lysandre's avatar
Lysandre committed
296

297
298
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
299
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
300

Lysandre's avatar
Lysandre committed
301
302
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
303
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
304

305
306
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
307
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
308

309
310
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
311
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
312
313
314

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
315
316
317
318
319
320
321
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)
322

323
    @slow
Lysandre's avatar
Lysandre committed
324
    def test_model_from_pretrained(self):
325
        for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
326
            model = AlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
327
            self.assertIsNotNone(model)
328
329
330
331
332
333


@require_torch
class AlbertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
334
        model = AlbertModel.from_pretrained("albert/albert-base-v2")
335
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
336
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
337
338
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
339
        expected_shape = torch.Size((1, 11, 768))
340
341
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
342
            [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]
343
344
        )

345
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))