test_configuration_utils.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
import os
18
19
import tempfile
import unittest
20
import warnings
21

22
from huggingface_hub import HfFolder, delete_repo
23
from parameterized import parameterized
24
from requests.exceptions import HTTPError
25

26
from transformers import AutoConfig, GenerationConfig
27
from transformers.testing_utils import TOKEN, USER, is_staging_test
28
29


30
class GenerationConfigTest(unittest.TestCase):
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    @parameterized.expand([(None,), ("foo.json",)])
    def test_save_load_config(self, config_name):
        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
            bad_words_ids=[[1, 2, 3], [4, 5]],
        )
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir, config_name=config_name)
            loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name)

        # Checks parameters that were specified
        self.assertEqual(loaded_config.do_sample, True)
        self.assertEqual(loaded_config.temperature, 0.7)
        self.assertEqual(loaded_config.length_penalty, 1.0)
        self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]])

        # Checks parameters that were not specified (defaults)
        self.assertEqual(loaded_config.top_k, 50)
        self.assertEqual(loaded_config.max_length, 20)
        self.assertEqual(loaded_config.max_time, None)
53
54

    def test_from_model_config(self):
55
        model_config = AutoConfig.from_pretrained("openai-community/gpt2")
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        generation_config_from_model = GenerationConfig.from_model_config(model_config)
        default_generation_config = GenerationConfig()

        # The generation config has loaded a few non-default parameters from the model config
        self.assertNotEqual(generation_config_from_model, default_generation_config)

        # One of those parameters is eos_token_id -- check if it matches
        self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id)
        self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id)

    def test_update(self):
        generation_config = GenerationConfig()
        update_kwargs = {
            "max_new_tokens": 1024,
            "foo": "bar",
        }
        update_kwargs_copy = copy.deepcopy(update_kwargs)
        unused_kwargs = generation_config.update(**update_kwargs)

        # update_kwargs was not modified (no side effects)
        self.assertEqual(update_kwargs, update_kwargs_copy)

        # update_kwargs was used to update the config on valid attributes
        self.assertEqual(generation_config.max_new_tokens, 1024)

        # `.update()` returns a dictionary of unused kwargs
        self.assertEqual(unused_kwargs, {"foo": "bar"})
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
    def test_initialize_new_kwargs(self):
        generation_config = GenerationConfig()
        generation_config.foo = "bar"

        with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
            generation_config.save_pretrained(tmp_dir)

            new_config = GenerationConfig.from_pretrained(tmp_dir)
        # update_kwargs was used to update the config on valid attributes
        self.assertEqual(new_config.foo, "bar")

        generation_config = GenerationConfig.from_model_config(new_config)
        assert not hasattr(generation_config, "foo")  # no new kwargs should be initialized if from config

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    def test_kwarg_init(self):
        """Tests that we can overwrite attributes at `from_pretrained` time."""
        default_config = GenerationConfig()
        self.assertEqual(default_config.temperature, 1.0)
        self.assertEqual(default_config.do_sample, False)
        self.assertEqual(default_config.num_beams, 1)

        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
            bad_words_ids=[[1, 2, 3], [4, 5]],
        )
        self.assertEqual(config.temperature, 0.7)
        self.assertEqual(config.do_sample, True)
        self.assertEqual(config.num_beams, 1)

        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir)
            loaded_config = GenerationConfig.from_pretrained(tmp_dir, temperature=1.0)

        self.assertEqual(loaded_config.temperature, 1.0)
        self.assertEqual(loaded_config.do_sample, True)
        self.assertEqual(loaded_config.num_beams, 1)  # default value

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def test_validate(self):
        """
        Tests that the `validate` method is working as expected. Note that `validate` is called at initialization time
        """
        # Case 1: A correct configuration will not throw any warning
        with warnings.catch_warnings(record=True) as captured_warnings:
            GenerationConfig()
        self.assertEqual(len(captured_warnings), 0)

        # Case 2: Inconsequent but technically wrong configuration will throw a warning (e.g. setting sampling
        # parameters with `do_sample=False`). May be escalated to an error in the future.
        with warnings.catch_warnings(record=True) as captured_warnings:
            GenerationConfig(temperature=0.5)
        self.assertEqual(len(captured_warnings), 1)

        # Case 3: Impossible sets of contraints/parameters will raise an exception
        with self.assertRaises(ValueError):
            GenerationConfig(num_return_sequences=2)

        # Case 4: Passing `generate()`-only flags to `validate` will raise an exception
        with self.assertRaises(ValueError):
            GenerationConfig(logits_processor="foo")

        # Case 5: Model-specific parameters will NOT raise an exception or a warning
        with warnings.catch_warnings(record=True) as captured_warnings:
            GenerationConfig(foo="bar")
        self.assertEqual(len(captured_warnings), 0)

151
152
153
154
    def test_refuse_to_save(self):
        """Tests that we refuse to save a generation config that fails validation."""

        # setting the temperature alone is invalid, as we also need to set do_sample to True -> throws a warning that
155
        # is caught, doesn't save, and raises an exception
156
157
158
        config = GenerationConfig()
        config.temperature = 0.5
        with tempfile.TemporaryDirectory() as tmp_dir:
159
            with self.assertRaises(ValueError) as exc:
160
                config.save_pretrained(tmp_dir)
161
            self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
162
163
164
165
166
167
168
            self.assertTrue(len(os.listdir(tmp_dir)) == 0)

        # greedy decoding throws an exception if we try to return multiple sequences -> throws an exception that is
        # caught, doesn't save, and raises a warning
        config = GenerationConfig()
        config.num_return_sequences = 2
        with tempfile.TemporaryDirectory() as tmp_dir:
169
            with self.assertRaises(ValueError) as exc:
170
                config.save_pretrained(tmp_dir)
171
            self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
172
173
            self.assertTrue(len(os.listdir(tmp_dir)) == 0)

174
        # final check: no warnings/exceptions thrown if it is correct, and file is saved
175
176
177
178
179
180
181
        config = GenerationConfig()
        with tempfile.TemporaryDirectory() as tmp_dir:
            with warnings.catch_warnings(record=True) as captured_warnings:
                config.save_pretrained(tmp_dir)
            self.assertEqual(len(captured_warnings), 0)
            self.assertTrue(len(os.listdir(tmp_dir)) == 1)

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-generation-config")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="valid_org/test-generation-config-org")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
        )
208
        config.push_to_hub("test-generation-config", token=self._token)
209
210
211
212
213
214
215
216
217
218
219

        new_config = GenerationConfig.from_pretrained(f"{USER}/test-generation-config")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-generation-config")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
220
            config.save_pretrained(tmp_dir, repo_id="test-generation-config", push_to_hub=True, token=self._token)
221
222
223
224
225
226
227
228
229
230
231
232

        new_config = GenerationConfig.from_pretrained(f"{USER}/test-generation-config")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

    def test_push_to_hub_in_organization(self):
        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
        )
233
        config.push_to_hub("valid_org/test-generation-config-org", token=self._token)
234
235
236
237
238
239
240
241
242
243
244
245

        new_config = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-generation-config-org")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(
246
                tmp_dir, repo_id="valid_org/test-generation-config-org", push_to_hub=True, token=self._token
247
248
249
250
251
252
            )

        new_config = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))