"docs/source/en/model_doc/table-transformer.md" did not exist on "149483b25297236fb3e82db1a108c9e4f1ee42b5"
README.md 5.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<!---
Copyright 2021 NVIDIA Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# Huggingface QDQBERT Quantization Example

The QDQBERT model adds fake quantization (pair of QuantizeLinear/DequantizeLinear ops) to:
 * linear layer inputs and weights
 * matmul inputs
 * residual add inputs

In this example, we use QDQBERT model to do quantization on SQuAD task, including Quantization Aware Training (QAT), Post Training Quantization (PTQ) and inferencing using TensorRT.

Required:
- [pytorch-quantization toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization)
- [TensorRT >= 8.2](https://developer.nvidia.com/tensorrt)
- PyTorch >= 1.10.0

## Setup the environment with Dockerfile

Under the directory of `transformers/`, build the docker image:
33
```bash
34
35
36
37
docker build . -f examples/research_projects/quantization-qdqbert/Dockerfile -t bert_quantization:latest
```

Run the docker:
38
```bash
39
40
41
42
docker run --gpus all --privileged --rm -it --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 bert_quantization:latest
```

In the container:
43
```bash
44
45
46
47
48
49
50
cd transformers/examples/research_projects/quantization-qdqbert/
```

## Quantization Aware Training (QAT)

Calibrate the pretrained model and finetune with quantization awared:

51
```bash
52
python3 run_quant_qa.py \
53
  --model_name_or_path google-bert/bert-base-uncased \
54
55
56
  --dataset_name squad \
  --max_seq_length 128 \
  --doc_stride 32 \
57
  --output_dir calib/google-bert/bert-base-uncased \
58
59
60
61
62
  --do_calib \
  --calibrator percentile \
  --percentile 99.99
```

63
```bash
64
python3 run_quant_qa.py \
65
  --model_name_or_path calib/google-bert/bert-base-uncased \
66
67
68
69
70
71
72
73
  --dataset_name squad \
  --do_train \
  --do_eval \
  --per_device_train_batch_size 12 \
  --learning_rate 4e-5 \
  --num_train_epochs 2 \
  --max_seq_length 128 \
  --doc_stride 32 \
74
75
  --output_dir finetuned_int8/google-bert/bert-base-uncased \
  --tokenizer_name google-bert/bert-base-uncased \
76
77
78
79
80
81
82
  --save_steps 0
```

### Export QAT model to ONNX

To export the QAT model finetuned above:

83
```bash
84
python3 run_quant_qa.py \
85
  --model_name_or_path finetuned_int8/google-bert/bert-base-uncased \
86
87
88
89
90
91
  --output_dir ./ \
  --save_onnx \
  --per_device_eval_batch_size 1 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
92
  --tokenizer_name google-bert/bert-base-uncased
93
94
95
96
97
98
99
```

Use `--recalibrate-weights` to calibrate the weight ranges according to the quantizer axis. Use `--quant-per-tensor` for per tensor quantization (default is per channel).
Recalibrating will affect the accuracy of the model, but the change should be minimal (< 0.5 F1).

### Benchmark the INT8 QAT ONNX model inference with TensorRT using dummy input

100
```bash
101
102
103
trtexec --onnx=model.onnx --explicitBatch --workspace=16384 --int8 --shapes=input_ids:64x128,attention_mask:64x128,token_type_ids:64x128 --verbose
```

104
105
### Benchmark the INT8 QAT ONNX model inference with [ONNX Runtime-TRT](https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html) using dummy input

106
```bash
107
108
109
python3 ort-infer-benchmark.py
```

110
111
### Evaluate the INT8 QAT ONNX model inference with TensorRT

112
```bash
113
114
115
116
117
118
119
python3 evaluate-hf-trt-qa.py \
  --onnx_model_path=./model.onnx \
  --output_dir ./ \
  --per_device_eval_batch_size 64 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
120
  --tokenizer_name google-bert/bert-base-uncased \
121
122
123
124
125
126
127
128
  --int8 \
  --seed 42
```

## Fine-tuning of FP32 model for comparison

Finetune a fp32 precision model with [transformers/examples/pytorch/question-answering/](../../pytorch/question-answering/):

129
```bash
130
python3 ../../pytorch/question-answering/run_qa.py \
131
  --model_name_or_path google-bert/bert-base-uncased \
132
133
134
135
136
137
  --dataset_name squad \
  --per_device_train_batch_size 12 \
  --learning_rate 3e-5 \
  --num_train_epochs 2 \
  --max_seq_length 128 \
  --doc_stride 32 \
138
  --output_dir ./finetuned_fp32/google-bert/bert-base-uncased \
139
140
141
142
143
144
145
146
147
  --save_steps 0 \
  --do_train \
  --do_eval
```

## Post Training Quantization (PTQ)

### PTQ by calibrating and evaluating the finetuned FP32 model above:

148
```bash
149
python3 run_quant_qa.py \
150
  --model_name_or_path ./finetuned_fp32/google-bert/bert-base-uncased \
151
152
153
154
155
  --dataset_name squad \
  --calibrator percentile \
  --percentile 99.99 \
  --max_seq_length 128 \
  --doc_stride 32 \
156
  --output_dir ./calib/google-bert/bert-base-uncased \
157
158
159
160
161
162
163
  --save_steps 0 \
  --do_calib \
  --do_eval
```

### Export the INT8 PTQ model to ONNX

164
```bash
165
python3 run_quant_qa.py \
166
  --model_name_or_path ./calib/google-bert/bert-base-uncased \
167
168
169
170
171
172
  --output_dir ./ \
  --save_onnx \
  --per_device_eval_batch_size 1 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
173
  --tokenizer_name google-bert/bert-base-uncased
174
175
176
177
```

### Evaluate the INT8 PTQ ONNX model inference with TensorRT

178
```bash
179
180
181
182
183
184
185
python3 evaluate-hf-trt-qa.py \
  --onnx_model_path=./model.onnx \
  --output_dir ./ \
  --per_device_eval_batch_size 64 \
  --max_seq_length 128 \
  --doc_stride 32 \
  --dataset_name squad \
186
  --tokenizer_name google-bert/bert-base-uncased \
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  --int8 \
  --seed 42
```

### Quantization options

Some useful options to support different implementations and optimizations. These should be specified for both calibration and finetuning.

|argument|description|
|--------|-----------|
|`--quant-per-tensor`| quantize weights with one quantization range per tensor |
|`--fuse-qkv` | use a single range (the max) for quantizing QKV weights and output activations  |
|`--clip-gelu N` | clip the output of GELU to a maximum of N when quantizing (e.g. 10) |
|`--disable-dropout` | disable dropout for consistent activation ranges |