test_modeling_gpt_neo.py 27.1 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch GPT Neo model. """


import unittest

from transformers import is_torch_available
Suraj Patil's avatar
Suraj Patil committed
21
from transformers.file_utils import cached_property
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from transformers.testing_utils import require_torch, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask


if is_torch_available():
    import torch

    from transformers import (
        GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
        GPT2Tokenizer,
        GPTNeoConfig,
        GPTNeoForCausalLM,
        GPTNeoModel,
    )
Suraj Patil's avatar
Suraj Patil committed
39
    from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoAttentionMixin, GPTNeoLocalSelfAttention
Suraj Patil's avatar
Suraj Patil committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434


class GPTNeoModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=4,
        attention_types=[[["global", "local"], 2]],
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        window_size=7,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.window_size = window_size
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1
        self.chunk_length = window_size
        self.attention_types = attention_types

    def get_large_model_config(self):
        return GPTNeoConfig.from_pretrained("gpt_neo")

    def prepare_config_and_inputs(self, gradient_checkpointing=False):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPTNeoConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
            max_position_embeddings=self.max_position_embeddings,
            use_cache=not gradient_checkpointing,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
            window_size=self.window_size,
            attention_types=self.attention_types,
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_gpt_neo_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTNeoModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        # past_key_values is not implemented
        # self.parent.assertEqual(len(result.past_key_values), config.n_layer)

    def create_and_check_gpt_neo_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTNeoModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTNeoForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_forward_and_backwards(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTNeoForCausalLM(config)
        model.to(torch_device)

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


@require_torch
class GPTNeoModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):

    all_model_classes = (GPTNeoModel, GPTNeoForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (GPTNeoForCausalLM,) if is_torch_available() else ()
    test_missing_keys = False
    test_pruning = False
    test_model_parallel = False

    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
        return inputs_dict

    def setUp(self):
        self.model_tester = GPTNeoModelTester(self)
        self.config_tester = ConfigTester(self, config_class=GPTNeoConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt_neo_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt_neo_model(*config_and_inputs)

    def test_gpt_neo_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt_neo_model_past(*config_and_inputs)

    def test_gpt_neo_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt_neo_gradient_checkpointing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(gradient_checkpointing=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def _get_local_attn_seq_len_block_len_windows(self, seq_len, window_size):
        block_length = window_size
        while seq_len % block_length != 0:
            block_length -= 1
        windows = seq_len // block_length
        local_seq_len = window_size + block_length
        return local_seq_len, block_length, windows

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "seq_length", None)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # test global attention shape
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, seq_len],
            )
            # test local attention shape
            encoder_key_length = self._get_local_attn_seq_len_block_len_windows(seq_len, chunk_length)[0]
            self.assertListEqual(
                list(attentions[-1].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, encoder_key_length],
            )

            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            # test global attention shape
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, seq_len],
            )

            # test local attention shape
            self.assertListEqual(
                list(self_attentions[-1].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, encoder_key_length],
            )

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx
            global_expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )

            local_seq_len, block_len, windows = self._get_local_attn_seq_len_block_len_windows(
                src_len, config.window_size
            )
            block_len = 1 if use_cache else block_len
            local_expected_shape = (
                batch_size * num_beam_groups,
                windows,
                config.num_attention_heads,
                block_len,
                local_seq_len,
            )

            shapes = [layer_attention.shape for layer_attention in iter_attentions]
            # every other layer is local attention layers
            # so alternate between expected shapes
            expected_shape = [
                global_expected_shape if i % 2 == 0 else local_expected_shape for i, _ in enumerate(iter_attentions)
            ]
            # check attn size
            self.assertListEqual(shapes, expected_shape)

Suraj Patil's avatar
Suraj Patil committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

@require_torch
class GPTNeoLocalAttentionTest(unittest.TestCase):
    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [0.4983, -0.7584, -1.6944, 0.5440],
                    [2.6918, 0.4206, 0.4176, 0.2055],
                    [-0.0071, -0.0405, -1.4920, -0.3630],
                    [1.0492, 0.1599, -1.7648, 0.2419],
                    [-1.8348, 2.0514, -0.1946, 0.3203],
                    [0.7672, -1.1600, -1.7118, -0.9056],
                    [0.2986, 0.5372, 0.7729, -0.1927],
                    [0.0285, 0.2629, -1.1156, -1.1992],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def test_look_back(self):
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.shape

        # check when seq_length is divisible by window_size
        window_size = 4
        block_length, num_block = GPTNeoAttentionMixin._get_block_length_and_num_blocks(seq_length, window_size)
        blocked_hidden_states = GPTNeoAttentionMixin._look_back(hidden_states, block_length, window_size)
        expected_shape = [batch_size, num_block, window_size + block_length, hidden_size]
        self.assertListEqual(list(blocked_hidden_states.shape), expected_shape)
        # The last block should contain the last (window_size + block_length) hidden_states
        self.assertTrue(
            torch.all(blocked_hidden_states[:, -1, ...] == hidden_states[:, -(window_size + block_length) :, ...])
        )

        # check when seq_length is not divisible by window_size
        window_size = 3
        block_length, num_block = GPTNeoAttentionMixin._get_block_length_and_num_blocks(seq_length, window_size)
        blocked_hidden_states = GPTNeoAttentionMixin._look_back(hidden_states, block_length, window_size)
        expected_shape = [batch_size, num_block, window_size + block_length, hidden_size]
        self.assertListEqual(list(blocked_hidden_states.shape), expected_shape)
        # The last block should contain the last (window_size + block_length) hidden_states
        self.assertTrue(
            torch.all(blocked_hidden_states[:, -1, ...] == hidden_states[:, -(window_size + block_length) :, ...])
        )

        # check when window_size is > seq_length
        window_size = 19
        block_length, num_block = GPTNeoAttentionMixin._get_block_length_and_num_blocks(seq_length, window_size)
        blocked_hidden_states = GPTNeoAttentionMixin._look_back(hidden_states, block_length, window_size)
        expected_shape = [batch_size, num_block, window_size + block_length, hidden_size]
        self.assertListEqual(list(blocked_hidden_states.shape), expected_shape)

        # when window_size > seq_length, num_blocks becomes 1, in this case
        # the first window_size values in blocked_hidden_staes are all zeros
        # and the last block_length values are equal to the hidden_states
        values = blocked_hidden_states[:, -1, :window_size, ...]
        expected_values = torch.zeros_like(values)
        self.assertTrue(torch.all(values == expected_values))

        self.assertTrue(torch.all(blocked_hidden_states[:, -1, -block_length:, ...] == hidden_states))

    def test_create_attention_mask(self):
        config = GPTNeoConfig.from_pretrained("valhalla/gpt-neo-random-tiny")
        layer = GPTNeoLocalSelfAttention(config)
        window_size = config.window_size
        batch_size, seq_length = 8, 1
        block_length, num_blocks = GPTNeoAttentionMixin._get_block_length_and_num_blocks(seq_length, window_size)

        causal_mask = layer._create_attention_mask(batch_size, seq_length, num_blocks, block_length, torch_device)
        # check shapes
        expected_shape = [batch_size, num_blocks, 1, block_length, window_size + block_length]
        self.assertListEqual(list(causal_mask.shape), expected_shape)
        # first window_size tokens in the first block are always padded
        # and should not be attended
        self.assertTrue(torch.all(causal_mask[:, 0, :, :, :window_size] == 0))
        # each window can attend at most window_size tokens
        self.assertTrue(torch.all(torch.sum(causal_mask, dim=4) <= config.window_size))

        # check if user provided attention_mask is handled correctly
        attention_mask = torch.ones(batch_size, seq_length, dtype=torch.long, device=torch_device)
        attention_mask[:, -3:] = 0  # don't attend last 3 tokens

        causal_mask = layer._create_attention_mask(
            batch_size, seq_length, num_blocks, block_length, torch_device, attention_mask
        )
        # last 3 tokens will be in the last block and shoul have 0s in causal_mask
        self.assertTrue(torch.all(causal_mask[:, -1, :, :, -3:] == 0))
        # check shapes
        expected_shape = [batch_size, num_blocks, 1, block_length, window_size + block_length]
        self.assertListEqual(list(causal_mask.shape), expected_shape)
        # first window_size tokens in the first block are always padded
        # and should not be attended
        self.assertTrue(torch.all(causal_mask[:, 0, :, :, :window_size] == 0))
        # each window can attend at most window_size tokens
        self.assertTrue(torch.all(torch.sum(causal_mask, dim=4) <= config.window_size))

    def test_local_attn_probs(self):
        model = GPTNeoModel.from_pretrained("valhalla/gpt-neo-random-tiny").eval()
        layer = model.h[1].attn.attention.to(torch_device)
        hidden_states = self._get_hidden_states()
        hidden_states = torch.cat([hidden_states, hidden_states - 0.5], dim=2)
        batch_size, seq_length, hidden_size = hidden_states.shape
        mask_tokens = 3
        attention_mask = torch.ones(batch_size, seq_length, device=torch_device, dtype=torch.long)
        attention_mask[:, -mask_tokens:] = 0  # dont atten last mask_tokens

        _, attn_probs = layer(hidden_states, attention_mask=attention_mask, output_attentions=True)

        # the last 3 tokens will be in the last block, and should have 0 attn_probs
        self.assertTrue(torch.all(attn_probs[:, -1, :, -mask_tokens:, -mask_tokens:] == 0))
        # the first config.window_size tokens in the first block are always padded
        # and should have 0 attn_probs
        self.assertTrue(torch.all(attn_probs[:, 0, :, : model.config.window_size :, : model.config.window_size] == 0))


@require_torch
class GPTNeoModelLanguageGenerationTest(unittest.TestCase):
    @cached_property
    def model(self):
        return GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B").to(torch_device)

    @cached_property
    def tokenizer(self):
        return GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")

    @slow
    def test_lm_generate_gpt_neo(self):
        for checkpointing in [True, False]:
            model = self.model
            model.config.gradient_checkpointing = checkpointing
            input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)  # The dog
            # fmt: off
            # The dog-eared copy of the book, which is a collection of essays by the late author,
            expected_output_ids = [464, 3290, 12, 3380, 4866, 286, 262, 1492, 11, 543, 318, 257, 4947, 286, 27126, 416, 262, 2739, 1772, 11]
            # fmt: on
            output_ids = model.generate(input_ids, do_sample=False)
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

    @slow
    def test_gpt_neo_sample(self):
        model = self.model
        tokenizer = self.tokenizer

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        EXPECTED_OUTPUT_STR = "Today is a nice day and if you don鈥檛 get the memo here is what you can"
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)

Suraj Patil's avatar
Suraj Patil committed
589
590
    @slow
    def test_batch_generation(self):
Suraj Patil's avatar
Suraj Patil committed
591
592
        model = self.model
        tokenizer = self.tokenizer
Suraj Patil's avatar
Suraj Patil committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I am",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a kitty. She is a very sweet and loving",
            "Today, I am going to talk about the best way to get a job in the",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_model_from_pretrained(self):
        for model_name in GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = GPTNeoModel.from_pretrained(model_name)
            self.assertIsNotNone(model)