"examples/pytorch/translation/README.md" did not exist on "505494a86ff5daa0ced517e7d5aef56cac49b3e5"
run_mlm_wwm.py 16.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=masked-lm
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

from datasets import Dataset, load_dataset

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForWholeWordMask,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
)
47
from transformers.trainer_utils import get_last_checkpoint, is_main_process
Sylvain Gugger's avatar
Sylvain Gugger committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
79
80
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
83
84
85
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
86
87
88
89
90
91
92
93
94
95
96
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
101
102
103
104


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

105
106
107
108
109
110
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    train_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
    )
    validation_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
127
128
129
130
131
132
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated. Default to the max input length of the model."
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
147
148
149
150
151
152
153
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    def __post_init__(self):
        if self.train_file is not None:
            extension = self.train_file.split(".")[-1]
            assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
        if self.validation_file is not None:
            extension = self.validation_file.split(".")[-1]
            assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def add_chinese_references(dataset, ref_file):
    with open(ref_file, "r", encoding="utf-8") as f:
        refs = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
    assert len(dataset) == len(refs)

    dataset_dict = {c: dataset[c] for c in dataset.column_names}
    dataset_dict["chinese_ref"] = refs
    return Dataset.from_dict(dataset_dict)


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

187
188
189
190
191
192
193
194
195
196
197
198
199
200
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
205

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
206
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
207
    )
208
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
209
210
211
212
213
214
215
216
217

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
218
219
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        datasets = load_dataset(extension, data_files=data_files)
Sylvain Gugger's avatar
Sylvain Gugger committed
258
259
260
261
262
263
264
265
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
266
267
268
269
270
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
271
    if model_args.config_name:
272
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
273
    elif model_args.model_name_or_path:
274
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
277
278
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

279
280
281
282
283
284
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
285
    if model_args.tokenizer_name:
286
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
287
    elif model_args.model_name_or_path:
288
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
292
293
294
295
296
297
298
299
300
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
301
302
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

318
319
    padding = "max_length" if data_args.pad_to_max_length else False

Sylvain Gugger's avatar
Sylvain Gugger committed
320
321
322
    def tokenize_function(examples):
        # Remove empty lines
        examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
323
        return tokenizer(examples["text"], padding=padding, truncation=True, max_length=data_args.max_seq_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
324
325
326
327
328
329
330
331
332
333
334
335

    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=[text_column_name],
        load_from_cache_file=not data_args.overwrite_cache,
    )

    # Add the chinese references if provided
    if data_args.train_ref_file is not None:
        tokenized_datasets["train"] = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file)
NatLun137's avatar
NatLun137 committed
336
    if data_args.validation_ref_file is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        tokenized_datasets["validation"] = add_chinese_references(
            tokenized_datasets["validation"], data_args.validation_ref_file
        )

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
        eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
357
358
359
360
361
362
        if last_checkpoint is not None:
            model_path = last_checkpoint
        elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
            model_path = model_args.model_name_or_path
        else:
            model_path = None
363
        train_result = trainer.train(model_path=model_path)
Sylvain Gugger's avatar
Sylvain Gugger committed
364
365
        trainer.save_model()  # Saves the tokenizer too for easy upload

366
367
368
369
370
371
372
373
374
375
376
        output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
        if trainer.is_world_process_zero():
            with open(output_train_file, "w") as writer:
                logger.info("***** Train results *****")
                for key, value in sorted(train_result.metrics.items()):
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))

Sylvain Gugger's avatar
Sylvain Gugger committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        eval_output = trainer.evaluate()

        perplexity = math.exp(eval_output["eval_loss"])
        results["perplexity"] = perplexity

        output_eval_file = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt")
        if trainer.is_world_process_zero():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
391
                for key, value in sorted(results.items()):
Sylvain Gugger's avatar
Sylvain Gugger committed
392
393
394
395
396
397
398
399
400
401
402
403
404
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

    return results


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()