test_beam_constraints.py 4.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
from transformers.testing_utils import require_torch


if is_torch_available():
    import torch

26
    from transformers.generation import DisjunctiveConstraint
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115


@require_torch
class ConstraintTest(unittest.TestCase):
    def test_input_types(self):
        # For consistency across different places the DisjunctiveConstraint is called,
        # dc.token_ids is a list of integers. It is also initialized only by integers.

        cset = [[1, 2, 4], [1, 2, 3, 4]]
        dc = DisjunctiveConstraint(cset)
        self.assertTrue(isinstance(dc.token_ids, list))

        with self.assertRaises(ValueError):
            DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]]))

        with self.assertRaises(ValueError):
            DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])])

    def test_check_illegal_input(self):
        # We can't have constraints that are complete subsets of another. This leads to a preverse
        # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
        # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
        # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
        # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
        cset = [[1, 2], [1, 2, 3, 4]]

        with self.assertRaises(ValueError):
            DisjunctiveConstraint(cset)  # fails here

    def test_example_progression(self):
        cset = [[1, 2, 3], [1, 2, 4]]

        dc = DisjunctiveConstraint(cset)

        stepped, completed, reset = dc.update(1)
        desired = stepped is True and completed is False and reset is False
        self.assertTrue(desired)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.current_seq == [1])

        stepped, completed, reset = dc.update(2)
        desired = stepped is True and completed is False and reset is False
        self.assertTrue(desired)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.current_seq == [1, 2])

        stepped, completed, reset = dc.update(3)
        desired = stepped is True and completed is True and reset is False
        self.assertTrue(desired)
        self.assertTrue(dc.completed)  # Completed!
        self.assertTrue(dc.current_seq == [1, 2, 3])

    def test_example_progression_unequal_three_mid_and_reset(self):
        cset = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]

        dc = DisjunctiveConstraint(cset)

        stepped, completed, reset = dc.update(1)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.current_seq == [1])

        stepped, completed, reset = dc.update(2)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.current_seq == [1, 2])

        stepped, completed, reset = dc.update(4)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.current_seq == [1, 2, 4])

        stepped, completed, reset = dc.update(5)
        self.assertTrue(dc.completed)  # Completed!
        self.assertTrue(dc.current_seq == [1, 2, 4, 5])

        dc.reset()

        stepped, completed, reset = dc.update(1)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.remaining() == 3)
        self.assertTrue(dc.current_seq == [1])

        stepped, completed, reset = dc.update(2)
        self.assertTrue(not dc.completed)
        self.assertTrue(dc.remaining() == 2)
        self.assertTrue(dc.current_seq == [1, 2])

        stepped, completed, reset = dc.update(5)
        self.assertTrue(dc.completed)  # Completed!
        self.assertTrue(dc.remaining() == 0)
        self.assertTrue(dc.current_seq == [1, 2, 5])