test_modeling_flax_wav2vec2.py 24.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
17
import multiprocessing
18
19
20
import unittest

import numpy as np
21
from datasets import load_dataset
22
23

from transformers import Wav2Vec2Config, is_flax_available
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    is_flaky,
27
    is_librosa_available,
28
    is_pt_flax_cross_test,
29
30
31
32
33
34
35
    is_pyctcdecode_available,
    require_flax,
    require_librosa,
    require_pyctcdecode,
    require_soundfile,
    slow,
)
36

Yih-Dar's avatar
Yih-Dar committed
37
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, random_attention_mask
38
39
40
41
42
43


if is_flax_available():
    import jax
    import jax.numpy as jnp
    import optax
44
    from flax.traverse_util import flatten_dict
45
46
47
48
49
50
51
52
53
54
55
    from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor
    from transformers.models.wav2vec2.modeling_flax_wav2vec2 import (
        FlaxWav2Vec2ForCTC,
        FlaxWav2Vec2ForPreTraining,
        FlaxWav2Vec2GumbelVectorQuantizer,
        FlaxWav2Vec2Model,
        _compute_mask_indices,
        _sample_negative_indices,
    )


56
57
if is_pyctcdecode_available():
    from transformers import Wav2Vec2ProcessorWithLM
58
    from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
59
60
61
62
63
64


if is_librosa_available():
    import librosa


65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class FlaxWav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=24,
        feat_extract_norm="layer",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=True,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
125
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = Wav2Vec2Config(
            do_stable_layer_norm=self.do_stable_layer_norm,
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
        )

        return config, input_values, attention_mask

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_values, attention_mask = config_and_inputs
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_flax
class FlaxWav2Vec2ModelTest(FlaxModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (FlaxWav2Vec2Model, FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining) if is_flax_available() else ()
    )

    def setUp(self):
        self.model_tester = FlaxWav2Vec2ModelTester(self)

    def test_train(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        input_values = inputs_dict["input_values"]
        attention_mask = inputs_dict["attention_mask"]

        model = FlaxWav2Vec2ForPreTraining(config)

        features_shape = (
            input_values.shape[0],
            model._get_feat_extract_output_lengths(np.array(input_values.shape[1])),
        )

        batch_size, sequence_length = features_shape[:2]

        mask_prob = 0.5
        mask_length = 4
        mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        dropout_rng, gumbel_rng = jax.random.split(jax.random.PRNGKey(0))

        output = model(
            input_values,
            attention_mask=attention_mask,
            mask_time_indices=mask_time_indices,
            train=True,
            dropout_rng=dropout_rng,
            gumbel_rng=gumbel_rng,
        )[0]

        self.assertTrue(output.shape == (batch_size, sequence_length, model.config.proj_codevector_dim))

    # overwrite because of `input_values`
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values", "attention_mask"]
            self.assertListEqual(arg_names[:2], expected_arg_names)

    # overwrite because of `input_values`
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(input_values, attention_mask=None, **kwargs):
                    return model(input_values=input_values, attention_mask=attention_mask, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):

                    self.assertEqual(jitted_output.shape, output.shape)

238
239
240
241
242
243
244
    def test_freeze_feature_encoder(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        input_values = inputs_dict["input_values"]
        attention_mask = inputs_dict["attention_mask"]

        model = FlaxWav2Vec2ForPreTraining(config)
245
        params = model.params
246
247

        # dummy loss function
248
249
250
251
252
253
254
255
256
        def compute_loss(
            params, input_values, attention_mask, freeze_feature_encoder: bool = False, epsilon: float = 1e-8
        ):
            outputs = model(
                input_values,
                attention_mask=attention_mask,
                freeze_feature_encoder=freeze_feature_encoder,
                params=params,
            )
257
            # compute cosine similarity of projected and projected_quantized states
258
259
260
            cosine_sim = optax.cosine_similarity(
                outputs.projected_states, outputs.projected_quantized_states, epsilon=epsilon
            )
261
            loss = cosine_sim.sum()
262
            return loss, outputs.to_tuple()
263
264

        # transform the loss function to get the gradients
265
        grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
266

267
268
        # compute loss, outputs and gradients for unfrozen model
        (loss, outputs), grads = grad_fn(params, input_values, attention_mask, freeze_feature_encoder=False)
269

270
271
272
273
        # compare to loss, outputs and gradients for frozen model
        (loss_frozen, outputs_frozen), grads_frozen = grad_fn(
            params, input_values, attention_mask, freeze_feature_encoder=True
        )
274

275
276
277
278
        # ensure that the outputs and losses remain precisely equal
        for output, output_frozen in zip(outputs, outputs_frozen):
            self.assertTrue((output == output_frozen).all())
        self.assertEqual(loss, loss_frozen)
279
280
281
282
283
284
285

        grads = flatten_dict(grads)
        grads_frozen = flatten_dict(grads_frozen)

        # ensure that the dicts of gradients contain the same keys
        self.assertEqual(grads.keys(), grads_frozen.keys())

286
        # ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen
287
288
289
290
291
292
293
        feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k)
        feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k)

        for feature_extractor_grad, feature_extractor_grad_frozen in zip(
            feature_extractor_grads, feature_extractor_grads_frozen
        ):
            self.assertTrue((feature_extractor_grad_frozen == 0.0).all())
294
            self.assertTrue((feature_extractor_grad > 0.0).any())
295
296
297
298
299
300

        # ensure that the gradients of all unfrozen layers remain equal, i.e. all layers excluding the frozen 'feature_extractor'
        grads = tuple(grads[k] for k in grads if "feature_extractor" not in k)
        grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k)

        for grad, grad_frozen in zip(grads, grads_frozen):
301
            self.assertTrue((grad == grad_frozen).all())
302

303
304
305
306
307
308
309
    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
            outputs = model(np.ones((1, 1024), dtype="f4"))
            self.assertIsNotNone(outputs)

310
311
312
313
314
    @is_pt_flax_cross_test
    @is_flaky()
    def test_equivalence_pt_to_flax(self):
        super().test_equivalence_pt_to_flax()

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

@require_flax
class FlaxWav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = np.ones((batch_size, sequence_length), dtype=np.int32)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
        )

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

358
359
360
361
362
363
364
    def test_compute_perplexity(self):
        probs = np.arange(100).reshape(2, 5, 10) / 100

        ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
365
        mask = np.ones((2,), dtype=bool)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        mask[0] = 0

        ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))

        negative_indices = _sample_negative_indices(features.shape, num_negatives)

        features = features.reshape(-1, hidden_size)  # BTC => (BxT)C
        # take negative vectors from sampled indices
        sampled_negatives = features[negative_indices.reshape(-1)]
        negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
            2, 0, 1, 3
        )

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors
        # => this means that `unique()` yields a single value for `hidden_size` dim
399
        self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def test_sample_negatives_with_attn_mask(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
            sequence_length, hidden_size
        )  # each value in vector consits of same value

        # second half of last input tensor is padded
        attention_mask = np.ones((batch_size, sequence_length), dtype=np.int8)
        attention_mask[-1, sequence_length // 2 :] = 0

        forbidden_indices = (
            np.arange(sequence_length // 2, sequence_length, dtype=np.int32) + (batch_size - 1) * sequence_length
        ).tolist()

        features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))

        negative_indices = _sample_negative_indices(features.shape, num_negatives, attention_mask=attention_mask)

        # make sure that no padding tokens are sampled
        self.assertTrue(all([idx not in negative_indices for idx in forbidden_indices]))

        features = features.reshape(-1, hidden_size)  # BTC => (BxT)C
        # take negative vectors from sampled indices
        sampled_negatives = features[negative_indices.reshape(-1)]
        negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
            2, 0, 1, 3
        )

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not just slices of vectors
        # => this means that `unique()` yields a single value for `hidden_size` dim
441
        self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))
442

443
444
445
446
447
448

@require_flax
@require_soundfile
@slow
class FlaxWav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
449
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
450
451
452
453
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
454

455
        return [x["array"] for x in speech_samples]
456
457
458
459
460
461
462

    def test_inference_ctc_robust_batched(self):
        model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)

        input_speech = self._load_datasamples(4)

463
        inputs = processor(input_speech, return_tensors="np", padding=True)
464
465
466
467
468
469
470
471
472
473
474
475

        input_values = inputs.input_values
        attention_mask = inputs.attention_mask

        logits = model(input_values, attention_mask=attention_mask).logits

        predicted_ids = jnp.argmax(logits, axis=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
Sylvain Gugger's avatar
Sylvain Gugger committed
476
477
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with the thousands of spectators were trivialities not worth thinking about",
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_pretrained(self):
        model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60", from_pt=True)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
            "facebook/wav2vec2-large-lv60", return_attention_mask=True
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="np", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(np.array(inputs_dict["input_values"].shape[1])),
        )

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
        )

        outputs = model(
            inputs_dict.input_values,
            attention_mask=inputs_dict.attention_mask,
            mask_time_indices=mask_time_indices,
        )

        # compute cosine similarity
        cosine_sim = optax.cosine_similarity(
            outputs.projected_states, outputs.projected_quantized_states, epsilon=1e-8
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-lv60")
        model_rand = FlaxWav2Vec2ForPreTraining(config)

        outputs_rand = model_rand(
            inputs_dict.input_values,
            attention_mask=inputs_dict.attention_mask,
            mask_time_indices=mask_time_indices,
        )

        # compute cosine similarity
        cosine_sim_rand = optax.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)

        model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="np").input_values

        logits = model(input_values).logits

        transcription = processor.batch_decode(np.array(logits)).text

        self.assertEqual(transcription[0], "bien y qu茅 regalo vas a abrir primero")
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_pool(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)

        model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="np").input_values

        logits = model(input_values).logits

        # test user-managed pool
        with multiprocessing.get_context("fork").Pool(2) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool).text

        self.assertEqual(transcription[0], "bien y qu茅 regalo vas a abrir primero")

        # user-managed pool + num_processes should trigger a warning
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
            2
        ) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text

        self.assertIn("num_process", cl.out)
        self.assertIn("it will be ignored", cl.out)

        self.assertEqual(transcription[0], "bien y qu茅 regalo vas a abrir primero")

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_invalid_pool(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)

        model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="np").input_values

        logits = model(input_values).logits

        # change default start method, which should trigger a warning if different than fork
        multiprocessing.set_start_method("spawn")
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
            transcription = processor.batch_decode(logits.numpy()).text

        self.assertIn("Falling back to sequential decoding.", cl.out)
        self.assertEqual(transcription[0], "bien y qu茅 regalo vas a abrir primero")