modeling_roberta.py 28.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RoBERTa model. """

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging

import torch
import torch.nn as nn
25
from torch.nn import CrossEntropyLoss, MSELoss
26

27
28
29
from .modeling_bert import BertEmbeddings, BertLayerNorm, BertModel, BertPreTrainedModel, gelu
from .configuration_roberta import RobertaConfig
from .file_utils import add_start_docstrings
LysandreJik's avatar
Doc  
LysandreJik committed
30

31
32
33
34
35
36
logger = logging.getLogger(__name__)

ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin",
    'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin",
    'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin",
VictorSanh's avatar
VictorSanh committed
37
    'distilroberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-pytorch_model.bin",
38
39
40
41
42
43
44
45
46
}

class RobertaEmbeddings(BertEmbeddings):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """
    def __init__(self, config):
        super(RobertaEmbeddings, self).__init__(config)
        self.padding_idx = 1
47
48
49
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size,
                                                padding_idx=self.padding_idx)
50
51
52
53
54
55
56
57

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        if position_ids is None:
            # Position numbers begin at padding_idx+1. Padding symbols are ignored.
            # cf. fairseq's `utils.make_positions`
            position_ids = torch.arange(self.padding_idx+1, seq_length+self.padding_idx+1, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
58
59
60
        return super(RobertaEmbeddings, self).forward(input_ids,
                                                      token_type_ids=token_type_ids,
                                                      position_ids=position_ids)
61

LysandreJik's avatar
Doc  
LysandreJik committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

ROBERTA_START_DOCSTRING = r"""    The RoBERTa model was proposed in
    `RoBERTa: A Robustly Optimized BERT Pretraining Approach`_
    by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
    Veselin Stoyanov. It is based on Google's BERT model released in 2018.
    
    It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining
    objective and training with much larger mini-batches and learning rates.
    
    This implementation is the same as BertModel with a tiny embeddings tweak as well as a setup for Roberta pretrained 
    models.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`RoBERTa: A Robustly Optimized BERT Pretraining Approach`:
        https://arxiv.org/abs/1907.11692

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
84
        config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the 
85
            model. Initializing with a config file does not load the weights associated with the model, only the configuration.
86
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
LysandreJik's avatar
Doc  
LysandreJik committed
87
88
89
90
91
92
"""

ROBERTA_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
LysandreJik's avatar
LysandreJik committed
93
            To match pre-training, RoBERTa input sequence should be formatted with <s> and </s> tokens as follows:
LysandreJik's avatar
Doc  
LysandreJik committed
94
95
96

            (a) For sequence pairs:

LysandreJik's avatar
LysandreJik committed
97
                ``tokens:         <s> Is this Jacksonville ? </s> </s> No it is not . </s>``
LysandreJik's avatar
Doc  
LysandreJik committed
98
99
100

            (b) For single sequences:

LysandreJik's avatar
LysandreJik committed
101
                ``tokens:         <s> the dog is hairy . </s>``
LysandreJik's avatar
Doc  
LysandreJik committed
102
103
104

            Fully encoded sequences or sequence pairs can be obtained using the RobertaTokenizer.encode function with 
            the ``add_special_tokens`` parameter set to ``True``.
thomwolf's avatar
thomwolf committed
105
106
107
108

            RoBERTa is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

109
110
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
LysandreJik's avatar
Doc  
LysandreJik committed
111
112
113
114
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
115
116
117
118
119
120
121
122
123
124
        **token_type_ids**: (`optional` need to be trained) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Optional segment token indices to indicate first and second portions of the inputs.
            This embedding matrice is not trained (not pretrained during RoBERTa pretraining), you will have to train it
            during finetuning.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1[``.
LysandreJik's avatar
Doc  
LysandreJik committed
125
126
127
128
129
130
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

Julien Chaumond's avatar
Julien Chaumond committed
131
@add_start_docstrings("The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
LysandreJik's avatar
Doc  
LysandreJik committed
132
                      ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
133
class RobertaModel(BertModel):
LysandreJik's avatar
Doc  
LysandreJik committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaModel.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

161
162
163
164
165
166
167
168
169
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaModel, self).__init__(config)

        self.embeddings = RobertaEmbeddings(config)
170
        self.init_weights()
171

thomwolf's avatar
thomwolf committed
172
    def get_input_embeddings(self):
173
174
        return self.embeddings.word_embeddings

thomwolf's avatar
thomwolf committed
175
176
    def set_input_embeddings(self, value):
        self.embeddings.word_emebddings = value
177

LysandreJik's avatar
Doc  
LysandreJik committed
178
179
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
180
class RobertaForMaskedLM(BertPreTrainedModel):
LysandreJik's avatar
Doc  
LysandreJik committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    r"""
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForMaskedLM.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

209
210
211
212
213
214
215
216
217
218
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForMaskedLM, self).__init__(config)

        self.roberta = RobertaModel(config)
        self.lm_head = RobertaLMHead(config)
219

220
        self.init_weights()
221

thomwolf's avatar
thomwolf committed
222
    def get_output_embeddings(self):
223
        return self.lm_head.decoder
224

225
226
227
228
229
230
231
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                masked_lm_labels=None):
        outputs = self.roberta(input_ids,
                               attention_mask=attention_mask,
                               token_type_ids=token_type_ids,
                               position_ids=position_ids,
                               head_mask=head_mask)
232
233
234
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

LysandreJik's avatar
Doc  
LysandreJik committed
235
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
236

237
238
239
240
241
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

LysandreJik's avatar
Doc  
LysandreJik committed
242
        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
243
244
245
246
247


class RobertaLMHead(nn.Module):
    """Roberta Head for masked language modeling."""

Julien Chaumond's avatar
Julien Chaumond committed
248
249
    def __init__(self, config):
        super(RobertaLMHead, self).__init__()
250
251
252
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)

253
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
254
255
256
257
258
259
260
261
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
262
        x = self.decoder(x) + self.bias
263
264

        return x
265
266


LysandreJik's avatar
Doc  
LysandreJik committed
267
268
269
@add_start_docstrings("""RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer 
    on top of the pooled output) e.g. for GLUE tasks. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
270
class RobertaForSequenceClassification(BertPreTrainedModel):
LysandreJik's avatar
Doc  
LysandreJik committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

erenup's avatar
erenup committed
293
        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
LysandreJik's avatar
Doc  
LysandreJik committed
294
295
296
297
298
299
        model = RobertaForSequenceClassification.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

300
301
302
303
304
305
306
307
308
309
310
311
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForSequenceClassification, self).__init__(config)
        self.num_labels = config.num_labels

        self.roberta = RobertaModel(config)
        self.classifier = RobertaClassificationHead(config)
    
312
313
314
315
316
317
318
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                labels=None):
        outputs = self.roberta(input_ids,
                               attention_mask=attention_mask,
                               token_type_ids=token_type_ids,
                               position_ids=position_ids,
                               head_mask=head_mask)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)

Matt Maybeno's avatar
Matt Maybeno committed
335

erenup's avatar
erenup committed
336
337
338
@add_start_docstrings("""Roberta Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
339
class RobertaForMultipleChoice(BertPreTrainedModel):
erenup's avatar
erenup committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            To match pre-training, RoBerta input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] [SEP] no it is not . [SEP]``

                ``token_type_ids:   0   0  0    0    0     0       0   0   0     1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``

                ``token_type_ids:   0   0   0   0  0     0   0``

359
360
361
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
erenup's avatar
erenup committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForMultipleChoice.from_pretrained('roberta-base')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]

    """
405
406
407
408
409
410
411
412
413
414
415
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForMultipleChoice, self).__init__(config)

        self.roberta = RobertaModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

erenup's avatar
erenup committed
416
        self.init_weights()
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
        num_choices = input_ids.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
        flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids,
                            attention_mask=flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            outputs = (loss,) + outputs

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)


Matt Maybeno's avatar
Matt Maybeno committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
@add_start_docstrings("""Roberta Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
class RobertaForTokenClassification(BertPreTrainedModel):
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForTokenClassification.from_pretrained('roberta-base')
470
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
Matt Maybeno's avatar
Matt Maybeno committed
471
472
473
474
475
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]

    """
476
477
478
479
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

Matt Maybeno's avatar
Matt Maybeno committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    def __init__(self, config):
        super(RobertaForTokenClassification, self).__init__(config)
        self.num_labels = config.num_labels

        self.roberta = RobertaModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.roberta(input_ids,
                               attention_mask=attention_mask,
                               token_type_ids=token_type_ids,
                               position_ids=position_ids,
                               head_mask=head_mask)

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), scores, (hidden_states), (attentions)

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

class RobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super(RobertaClassificationHead, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x