run_squad.py 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19


import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import glob
21
22
23
import logging
import os
import random
24
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
27
import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
29
from torch.utils.data.distributed import DistributedSampler
30
from tqdm import tqdm, trange
31

32
from transformers import (
33
    MODEL_FOR_QUESTION_ANSWERING_MAPPING,
34
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
    AdamW,
36
37
38
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
40
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
41
)
Aymeric Augustin's avatar
Aymeric Augustin committed
42
43
44
45
46
47
48
49
50
51
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor


try:
    from torch.utils.tensorboard import SummaryWriter
52
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
53
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
54

55
56
57

logger = logging.getLogger(__name__)

58
59
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
thomwolf's avatar
thomwolf committed
60

61

thomwolf's avatar
thomwolf committed
62
63
64
65
66
67
68
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

69

70
71
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
72

73

74
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
75
76
77
78
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

79
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
80
81
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
82
83

    if args.max_steps > 0:
84
        t_total = args.max_steps
85
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
86
    else:
87
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
88

89
    # Prepare optimizer and schedule (linear warmup and decay)
90
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
91
    optimizer_grouped_parameters = [
92
93
94
95
96
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
97
    ]
98
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
99
    scheduler = get_linear_schedule_with_warmup(
100
101
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
102
103

    # Check if saved optimizer or scheduler states exist
104
105
106
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
107
        # Load in optimizer and scheduler states
108
109
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
110

thomwolf's avatar
thomwolf committed
111
112
113
114
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
115
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
116

117
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
118

119
120
121
122
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
123
124
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
125
126
127
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
128

thomwolf's avatar
thomwolf committed
129
130
131
132
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
133
134
135
136
137
138
139
140
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
141
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
142

Lysandre's avatar
Lysandre committed
143
    global_step = 1
144
145
146
147
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
148
149
150
151
152
153
154
155
156
157
158
159
160
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
161

thomwolf's avatar
thomwolf committed
162
    tr_loss, logging_loss = 0.0, 0.0
163
    model.zero_grad()
164
165
166
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
167
    # Added here for reproductibility
168
169
    set_seed(args)

170
    for _ in train_iterator:
171
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
172
        for step, batch in enumerate(epoch_iterator):
173
174
175
176
177
178

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

179
            model.train()
thomwolf's avatar
thomwolf committed
180
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
181
182

            inputs = {
183
184
                "input_ids": batch[0],
                "attention_mask": batch[1],
185
                "token_type_ids": batch[2],
186
187
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
188
189
            }

190
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
191
192
                del inputs["token_type_ids"]

193
194
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
195
                if args.version_2_with_negative:
196
                    inputs.update({"is_impossible": batch[7]})
197
198
199
200
201
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )

Peiqin Lin's avatar
typos  
Peiqin Lin committed
202
            outputs = model(**inputs)
203
204
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
205

206
            if args.n_gpu > 1:
207
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
208
209
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
210

211
212
213
214
215
216
217
218
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
219
                if args.fp16:
220
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
221
                else:
222
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
223

224
                optimizer.step()
225
                scheduler.step()  # Update learning rate schedule
226
227
228
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
229
                # Log metrics
230
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
231
232
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
233
234
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
235
236
237
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
238
239
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
240
                # Save model checkpoint
241
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
242
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
243
244
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
245
                    # Take care of distributed/parallel training
246
                    model_to_save = model.module if hasattr(model, "module") else model
247
                    model_to_save.save_pretrained(output_dir)
248
249
                    tokenizer.save_pretrained(output_dir)

250
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
251
252
                    logger.info("Saving model checkpoint to %s", output_dir)

253
254
255
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
256

257
258
259
260
261
262
263
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
264
265
266
    if args.local_rank in [-1, 0]:
        tb_writer.close()

267
268
269
270
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
271
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
272
273
274
275
276

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
277

278
    # Note that DistributedSampler samples randomly
279
    eval_sampler = SequentialSampler(dataset)
280
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
281

ronakice's avatar
ronakice committed
282
    # multi-gpu evaluate
283
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
284
285
        model = torch.nn.DataParallel(model)

286
287
288
289
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
290

291
    all_results = []
292
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
293

294
295
296
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
297

298
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
299
            inputs = {
300
301
                "input_ids": batch[0],
                "attention_mask": batch[1],
302
                "token_type_ids": batch[2],
LysandreJik's avatar
LysandreJik committed
303
            }
304

305
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
306
307
                del inputs["token_type_ids"]

308
            feature_indices = batch[3]
309

LysandreJik's avatar
Cleanup  
LysandreJik committed
310
            # XLNet and XLM use more arguments for their predictions
311
312
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
313
314
315
316
317
                # for lang_id-sensitive xlm models
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )
LysandreJik's avatar
Cleanup  
LysandreJik committed
318

319
320
            outputs = model(**inputs)

321
322
        for i, feature_index in enumerate(feature_indices):
            eval_feature = features[feature_index.item()]
323
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
324

LysandreJik's avatar
LysandreJik committed
325
326
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
327
328
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
329
330
331
332
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
333
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
334
335
336
                cls_logits = output[4]

                result = SquadResult(
337
338
339
                    unique_id,
                    start_logits,
                    end_logits,
340
341
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
342
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
343
344
345
346
                )

            else:
                start_logits, end_logits = output
347
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
348

349
            all_results.append(result)
350

351
    evalTime = timeit.default_timer() - start_time
352
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
353

thomwolf's avatar
thomwolf committed
354
    # Compute predictions
355
356
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
357

358
    if args.version_2_with_negative:
359
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
360
361
    else:
        output_null_log_odds_file = None
362

LysandreJik's avatar
Cleanup  
LysandreJik committed
363
    # XLNet and XLM use a more complex post-processing procedure
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
383
    else:
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
399

LysandreJik's avatar
Cleanup  
LysandreJik committed
400
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
401
    results = squad_evaluate(examples, predictions)
402
403
    return results

404

405
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
406
    if args.local_rank not in [-1, 0] and not evaluate:
407
408
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
409

410
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
411
    input_dir = args.data_dir if args.data_dir else "."
412
413
414
415
416
417
418
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
419
420
421
    )

    # Init features and dataset from cache if it exists
422
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
423
        logger.info("Loading features from cached file %s", cached_features_file)
424
        features_and_dataset = torch.load(cached_features_file)
425
426
427
428
429
        features, dataset, examples = (
            features_and_dataset["features"],
            features_and_dataset["dataset"],
            features_and_dataset["examples"],
        )
thomwolf's avatar
thomwolf committed
430
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
431
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
432

433
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
434
435
436
            try:
                import tensorflow_datasets as tfds
            except ImportError:
437
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
438
439

            if args.version_2_with_negative:
440
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
441
442

            tfds_examples = tfds.load("squad")
443
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
444
445
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
446
447
448
449
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
450

451
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
452
453
454
455
456
457
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
458
            return_dataset="pt",
erenup's avatar
erenup committed
459
            threads=args.threads,
Lysandre's avatar
Lysandre committed
460
461
        )

thomwolf's avatar
thomwolf committed
462
        if args.local_rank in [-1, 0]:
463
            logger.info("Saving features into cached file %s", cached_features_file)
464
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
thomwolf's avatar
thomwolf committed
465

VictorSanh's avatar
VictorSanh committed
466
    if args.local_rank == 0 and not evaluate:
467
468
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
469

470
471
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
472
473
    return dataset

474
475
476
477

def main():
    parser = argparse.ArgumentParser()

478
    # Required parameters
479
480
481
482
483
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
484
        help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
485
486
487
488
489
490
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
491
        help="Path to pretrained model or model identifier from huggingface.co/models",
492
493
494
495
496
497
498
499
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
500

501
    # Other parameters
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
574
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )
623
624
625
626
627
628
    parser.add_argument(
        "--lang_id",
        default=0,
        type=int,
        help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
    )
629

630
631
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
663
664
    args = parser.parse_args()

665
666
667
668
669
670
671
    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

672
673
674
675
676
677
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
678
        raise ValueError(
679
680
681
682
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
683

684
    # Setup distant debugging if needed
685
686
687
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
688

689
        print("Waiting for debugger attach")
690
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
691
692
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
693
    # Setup CUDA, GPU & distributed training
694
    if args.local_rank == -1 or args.no_cuda:
695
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
696
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
697
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
698
699
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
700
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
701
702
        args.n_gpu = 1
    args.device = device
703

thomwolf's avatar
thomwolf committed
704
    # Setup logging
705
706
707
708
709
710
711
712
713
714
715
716
717
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
718

719
720
    # Set seed
    set_seed(args)
721

thomwolf's avatar
thomwolf committed
722
    # Load pretrained model and tokenizer
723
    if args.local_rank not in [-1, 0]:
724
725
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
726

727
    args.model_type = args.model_type.lower()
728
    config = AutoConfig.from_pretrained(
729
730
731
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
732
    tokenizer = AutoTokenizer.from_pretrained(
733
734
735
736
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
737
    model = AutoModelForQuestionAnswering.from_pretrained(
738
739
740
741
742
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
743
744

    if args.local_rank == 0:
745
746
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
747

thomwolf's avatar
thomwolf committed
748
    model.to(args.device)
749

750
751
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
752
753
754
755
756
757
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
758
759

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
760
        except ImportError:
761
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
762

thomwolf's avatar
thomwolf committed
763
    # Training
764
    if args.do_train:
765
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
766
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
767
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
768

thomwolf's avatar
thomwolf committed
769
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
770
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
771
772
773
774
775
776
777
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
778
        # Take care of distributed/parallel training
779
        model_to_save = model.module if hasattr(model, "module") else model
780
781
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
782
783

        # Good practice: save your training arguments together with the trained model
784
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
785

786
        # Load a trained model and vocabulary that you have fine-tuned
787
788
        model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir)  # , force_download=True)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
789
790
        model.to(args.device)

thomwolf's avatar
thomwolf committed
791
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
792
793
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
794
795
796
797
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
798
799
800
801
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
802
803
804
805
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
806

807
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
808

809
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
810
            # Reload the model
811
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
812
            model = AutoModelForQuestionAnswering.from_pretrained(checkpoint)  # , force_download=True)
813
            model.to(args.device)
thomwolf's avatar
thomwolf committed
814
815

            # Evaluate
816
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
817

818
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
819
            results.update(result)
thomwolf's avatar
thomwolf committed
820

821
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
822

823
    return results
824
825
826
827


if __name__ == "__main__":
    main()