test_pipelines_visual_question_answering.py 4.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
19
from transformers.testing_utils import nested_simplify, require_tf, require_torch, require_vision, slow
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


@require_torch
@require_vision
class VisualQuestionAnsweringPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING

    def get_test_pipeline(self, model, tokenizer, feature_extractor):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        examples = [
            {
                "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
                "question": "How many cats are there?",
            },
            {
                "image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
                "question": "How many cats are there?",
            },
        ]
        return vqa_pipeline, examples

    def run_pipeline_test(self, vqa_pipeline, examples):
        outputs = vqa_pipeline(examples, top_k=1)
        self.assertEqual(
            outputs,
            [
                [{"score": ANY(float), "answer": ANY(str)}],
                [{"score": ANY(float), "answer": ANY(str)}],
            ],
        )

    @require_torch
    def test_small_model_pt(self):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        question = "How many cats are there?"

        outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2)
        self.assertEqual(
            outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
        )

        outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
        )

    @slow
    @require_torch
    def test_large_model_pt(self):
        vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        question = "How many cats are there?"

        outputs = vqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
        )

        outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
        )

        outputs = vqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,
        )

    @require_tf
    @unittest.skip("Visual question answering not implemented in TF")
    def test_small_model_tf(self):
        pass