extract_features.py 12.3 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
"""Extract pre-computed feature vectors from a PyTorch BERT model."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

thomwolf's avatar
thomwolf committed
21
import argparse
22
23
import codecs
import collections
thomwolf's avatar
thomwolf committed
24
import logging
25
26
27
import json
import re

thomwolf's avatar
thomwolf committed
28
import torch
thomwolf's avatar
thomwolf committed
29
30
31
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

thomwolf's avatar
thomwolf committed
32
import tokenization
33
from modeling import BertConfig, BertModel
thomwolf's avatar
thomwolf committed
34
35
36
37
38

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132


class InputExample(object):

    def __init__(self, unique_id, text_a, text_b):
        self.unique_id = unique_id
        self.text_a = text_a
        self.text_b = text_b


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
        self.unique_id = unique_id
        self.tokens = tokens
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.input_type_ids = input_type_ids


def convert_examples_to_features(examples, seq_length, tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > seq_length - 2:
                tokens_a = tokens_a[0:(seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        input_type_ids = []
        tokens.append("[CLS]")
        input_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            input_type_ids.append(0)
        tokens.append("[SEP]")
        input_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                input_type_ids.append(1)
            tokens.append("[SEP]")
            input_type_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < seq_length:
            input_ids.append(0)
            input_mask.append(0)
            input_type_ids.append(0)

        assert len(input_ids) == seq_length
        assert len(input_mask) == seq_length
        assert len(input_type_ids) == seq_length

        if ex_index < 5:
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
            logger.info("*** Example ***")
            logger.info("unique_id: %s" % (example.unique_id))
            logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))

        features.append(
            InputFeatures(
                unique_id=example.unique_id,
                tokens=tokens,
                input_ids=input_ids,
                input_mask=input_mask,
                input_type_ids=input_type_ids))
    return features


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


def read_examples(input_file):
    """Read a list of `InputExample`s from an input file."""
    examples = []
    unique_id = 0
thomwolf's avatar
thomwolf committed
172
    with open(input_file, "r") as reader:
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        while True:
            line = tokenization.convert_to_unicode(reader.readline())
            if not line:
                break
            line = line.strip()
            text_a = None
            text_b = None
            m = re.match(r"^(.*) \|\|\| (.*)$", line)
            if m is None:
                text_a = line
            else:
                text_a = m.group(1)
                text_b = m.group(2)
            examples.append(
                InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
            unique_id += 1
    return examples


thomwolf's avatar
thomwolf committed
192
def main():
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--input_file", default=None, type=str, required=True)
    parser.add_argument("--vocab_file", default=None, type=str, required=True, 
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_file", default=None, type=str, required=True)
    parser.add_argument("--bert_config_file", default=None, type=str, required=True,
                        help="The config json file corresponding to the pre-trained BERT model. "
                            "This specifies the model architecture.")
    parser.add_argument("--init_checkpoint", default=None, type=str, required=True, 
                        help="Initial checkpoint (usually from a pre-trained BERT model).")

    ## Other parameters
    parser.add_argument("--layers", default="-1,-2,-3,-4", type=str)
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences longer "
                            "than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--do_lower_case", default=True, action='store_true', 
                        help="Whether to lower case the input text. Should be True for uncased "
                            "models and False for cased models.")
    parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predictions.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help = "local_rank for distributed training on gpus")

    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
228
229
230
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device", device, "n_gpu", n_gpu, "distributed training", bool(args.local_rank != -1))
231
232
233

    layer_indexes = [int(x) for x in args.layers.split(",")]

thomwolf's avatar
thomwolf committed
234
    bert_config = BertConfig.from_json_file(args.bert_config_file)
235
236
237
238
239
240
241
242
243
244
245
246
247

    tokenizer = tokenization.FullTokenizer(
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)

    examples = read_examples(args.input_file)

    features = convert_examples_to_features(
        examples=examples, seq_length=args.max_seq_length, tokenizer=tokenizer)

    unique_id_to_feature = {}
    for feature in features:
        unique_id_to_feature[feature.unique_id] = feature

thomwolf's avatar
thomwolf committed
248
249
250
251
    model = BertModel(bert_config)
    if args.init_checkpoint is not None:
        model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
    model.to(device)
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
258
259
260
261
262

    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)

thomwolf's avatar
thomwolf committed
263
    eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)
thomwolf's avatar
thomwolf committed
264
265
266
267
268
269
270
271
    if args.local_rank == -1:
        eval_sampler = SequentialSampler(eval_data)
    else:
        eval_sampler = DistributedSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)

    model.eval()
    with open(args.output_file, "w", encoding='utf-8') as writer:
thomwolf's avatar
thomwolf committed
272
        for input_ids, input_mask, example_indices in eval_dataloader:
thomwolf's avatar
thomwolf committed
273
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
274
            input_mask = input_mask.to(device)
thomwolf's avatar
thomwolf committed
275

thomwolf's avatar
thomwolf committed
276
            all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask)
thomwolf's avatar
thomwolf committed
277
            all_encoder_layers = all_encoder_layers
thomwolf's avatar
thomwolf committed
278

thomwolf's avatar
thomwolf committed
279
            for b, example_index in enumerate(example_indices):
thomwolf's avatar
thomwolf committed
280
281
282
283
284
                feature = features[example_index.item()]
                unique_id = int(feature.unique_id)
                # feature = unique_id_to_feature[unique_id]
                output_json = collections.OrderedDict()
                output_json["linex_index"] = unique_id
thomwolf's avatar
thomwolf committed
285
                all_out_features = []
thomwolf's avatar
thomwolf committed
286
287
288
                for (i, token) in enumerate(feature.tokens):
                    all_layers = []
                    for (j, layer_index) in enumerate(layer_indexes):
thomwolf's avatar
thomwolf committed
289
290
                        layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy()
                        layer_output = layer_output[b]
thomwolf's avatar
thomwolf committed
291
292
293
                        layers = collections.OrderedDict()
                        layers["index"] = layer_index
                        layers["values"] = [
thomwolf's avatar
thomwolf committed
294
                            round(x.item(), 6) for x in layer_output[i]
thomwolf's avatar
thomwolf committed
295
296
                        ]
                        all_layers.append(layers)
thomwolf's avatar
thomwolf committed
297
298
299
300
301
                    out_features = collections.OrderedDict()
                    out_features["token"] = token
                    out_features["layers"] = all_layers
                    all_out_features.append(out_features)
                output_json["features"] = all_out_features
thomwolf's avatar
thomwolf committed
302
                writer.write(json.dumps(output_json) + "\n")
303
304
305


if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
306
    main()