configuration_albert.py 4.95 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration """

Lysandre's avatar
Lysandre committed
18
19
from .configuration_utils import PretrainedConfig

20
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
Lysandre's avatar
Lysandre committed
21
22
23
24
25
26
27
28
    'albert-base-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-config.json",
    'albert-large-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-config.json",
    'albert-xlarge-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-config.json",
    'albert-xxlarge-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-config.json",
    'albert-base-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-config.json",
    'albert-large-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
    'albert-xlarge-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-config.json",
    'albert-xxlarge-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-config.json",
29
30
}

Lysandre's avatar
Lysandre committed
31
32
33
34
35
36
class AlbertConfig(PretrainedConfig):
    """Configuration for `AlbertModel`.

    The default settings match the configuration of model `albert_xxlarge`.
    """

37
38
    pretrained_config_archive_map = ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP

Lysandre's avatar
Lysandre committed
39
    def __init__(self,
thomwolf's avatar
thomwolf committed
40
                 vocab_size=30000,
Lysandre's avatar
Lysandre committed
41
42
43
44
45
46
47
                 embedding_size=128,
                 hidden_size=4096,
                 num_hidden_layers=12,
                 num_hidden_groups=1,
                 num_attention_heads=64,
                 intermediate_size=16384,
                 inner_group_num=1,
48
                 hidden_act="gelu_new",
Lysandre's avatar
Lysandre committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
                 hidden_dropout_prob=0,
                 attention_probs_dropout_prob=0,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12, **kwargs):
        """Constructs AlbertConfig.

        Args:
            vocab_size: Vocabulary size of `inputs_ids` in `AlbertModel`.
            embedding_size: size of voc embeddings.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_hidden_groups: Number of group for the hidden layers, parameters in
                the same group are shared.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            inner_group_num: int, number of inner repetition of attention and ffn.
            down_scale_factor: float, the scale to apply
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler.
            hidden_dropout_prob: The dropout probability for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `AlbertModel`.
            initializer_range: The stdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        super(AlbertConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
86
        self.vocab_size = vocab_size
Lysandre's avatar
Lysandre committed
87
88
89
90
91
92
93
94
95
96
97
98
99
        self.embedding_size = embedding_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_hidden_groups = num_hidden_groups
        self.num_attention_heads = num_attention_heads
        self.inner_group_num = inner_group_num
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
100
        self.layer_norm_eps = layer_norm_eps