"docs/source/vscode:/vscode.git/clone" did not exist on "d818dd3a41925a98694b1d6a6265de1b35f69a15"
test_image_processing_efficientnet.py 4.5 KB
Newer Older
Alara Dirik's avatar
Alara Dirik committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_vision_available
Alara Dirik's avatar
Alara Dirik committed
23

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
Alara Dirik's avatar
Alara Dirik committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


if is_vision_available():
    from transformers import EfficientNetImageProcessor


class EfficientNetImageProcessorTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=13,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
        size = size if size is not None else {"height": 18, "width": 18}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

    def prepare_image_processor_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
        }

68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def expected_output_image_shape(self, images):
        return self.num_channels, self.size["height"], self.size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

Alara Dirik's avatar
Alara Dirik committed
82
83
84

@require_torch
@require_vision
85
class EfficientNetImageProcessorTest(ImageProcessingTestMixin, unittest.TestCase):
Alara Dirik's avatar
Alara Dirik committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    image_processing_class = EfficientNetImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = EfficientNetImageProcessorTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})

110
111
112
113
114
115
    def test_rescale(self):
        # EfficientNet optionally rescales between -1 and 1 instead of the usual 0 and 1
        image = np.arange(0, 256, 1, dtype=np.uint8).reshape(1, 8, 32)

        image_processor = self.image_processing_class(**self.image_processor_dict)

116
117
        rescaled_image = image_processor.rescale(image, scale=1 / 127.5)
        expected_image = (image * (1 / 127.5)).astype(np.float32) - 1
118
119
120
        self.assertTrue(np.allclose(rescaled_image, expected_image))

        rescaled_image = image_processor.rescale(image, scale=1 / 255, offset=False)
121
        expected_image = (image / 255.0).astype(np.float32)
122
        self.assertTrue(np.allclose(rescaled_image, expected_image))