run_openai_gpt.py 12 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
    Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
    It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py

    This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)

from pytorch_pretrained_bert import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, OpenAIAdam

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

def load_rocstories_dataset(dataset_path):
    """ Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
    with open(dataset_path, encoding='utf_8') as f:
        f = csv.reader(f)
        output = []
        next(f) # skip the first line
        for line in tqdm(f):
            output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
    return output

thomwolf's avatar
thomwolf committed
55
56
57
58
59
def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token):
    """ Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label)

        To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:
        input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
thomwolf's avatar
thomwolf committed
60
61
62
63
    """
    tensor_datasets = []
    for dataset in encoded_datasets:
        n_batch = len(dataset)
thomwolf's avatar
thomwolf committed
64
65
66
67
        input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64)
        mc_token_mask = np.zeros((n_batch, 2, input_len), dtype=np.int64)
        lm_labels = np.full((n_batch, 2, input_len), -1, dtype=np.int64)
        mc_labels = np.zeros((n_batch,), dtype=np.int64)
thomwolf's avatar
thomwolf committed
68
        for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
thomwolf's avatar
thomwolf committed
69
70
            with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
            with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token]
thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
            input_ids[i, 0, :len(with_cont1)] = with_cont1
            input_ids[i, 1, :len(with_cont2)] = with_cont2
            mc_token_mask[i, 0, len(with_cont1) - 1] = 1
            lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
            lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
            mc_labels[i] = mc_label
thomwolf's avatar
thomwolf committed
77
        all_inputs = (input_ids, mc_token_mask, lm_labels, mc_labels)
thomwolf's avatar
thomwolf committed
78
79
80
81
82
83
84
        tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
    return tensor_datasets

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
thomwolf's avatar
thomwolf committed
85
86
87
88
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
thomwolf's avatar
thomwolf committed
89
90
91
92
93
94
95
96
97
98
99
100
101
    parser.add_argument('--train_dataset', type=str, default='cloze_test_val__spring2016 - cloze_test_ALL_val.tsv')
    parser.add_argument('--eval_dataset', type=str, default='test_spring2016.tsv')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.5)
    parser.add_argument('--n_valid', type=int, default=374)
thomwolf's avatar
thomwolf committed
102
103
104

    parser.add_argument('--server_ip', type=str, default='')
    parser.add_argument('--server_port', type=str, default='')
thomwolf's avatar
thomwolf committed
105
106
107
    args = parser.parse_args()
    print(args)

thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
114
115
    # Some distant debugging
    # See https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
    import ptvsd
    print("Waiting for debugger attach")
    ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
    ptvsd.wait_for_attach()


thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
122
123
124
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
131
132
133
134
135
136
137
138
139
    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))

    # Load and encode the datasets
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)

thomwolf's avatar
thomwolf committed
148
149
    logger.info("Encoding dataset...")
    train_dataset = load_rocstories_dataset(args.train_dataset)
thomwolf's avatar
thomwolf committed
150
151
152
    eval_dataset = load_rocstories_dataset(args.eval_dataset)
    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)
thomwolf's avatar
thomwolf committed
153
154

    # Compute the mex input length for the Transformer
thomwolf's avatar
thomwolf committed
155
    input_length = max(len(story) + max(len(cont1), len(cont2)) + 3  \
thomwolf's avatar
thomwolf committed
156
                           for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
thomwolf's avatar
thomwolf committed
157
158
    input_length = min(input_length, model.config.n_positions)  # Max size of input for the pre-trained model
    max_sub_part_length = input_length // 2 - 2
thomwolf's avatar
thomwolf committed
159
160

    # Prepare inputs tensors and dataloaders
thomwolf's avatar
thomwolf committed
161
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_sub_part_length, *special_tokens_ids)
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    num_train_optimization_steps = len(train_data) // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=args.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        nb_tr_steps = 0
        tr_loss = 0
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_mask, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_mask, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
                optimizer.step()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, state_dict=model_state_dict,
                                                      num_special_tokens=len(special_tokens))
    model.to(device)

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            input_ids, mc_token_mask, lm_labels, mc_labels = batch
            with torch.no_grad():
                _, mc_loss = model(input_ids, mc_token_mask, lm_labels, mc_labels)
                _, mc_logits = model(input_ids, mc_token_mask)

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss/nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'train_loss': train_loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

if __name__ == '__main__':
    main()